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INTRODUCTION 

General 

The application of high resolution nuclear magnetic 

resonance spectroscopy to problems of chemical interest results 

from the dependence of the nmr parameters, the chemical shift 

and spin-spin coupling constants, upon the nature of the elec­

tronic environments of the magnetic nuclei which are studied. 

The theory of high resolution nmr is developed in several 

standard text books (1, 2, 3) and will not be discussed here. 

The purpose of the studies reported upon in this disserta­

tion was to obtain data which might aid in our understanding 

of the nature of the bonding of phosphorus to other elements, 

such as transition metals, carbon, nitrogen, oxygen, fluorine 

and sulfur. These studies included the determination of the 

31 31 
magnitude and sign of geminal P- P spin-spin coupling 

constants in a number of transition metal complexes which con­

tain two molecules of a trivalent phosphorus-containing ligand 

bound to the metal through phosphorus. Observations were made 

2 
as to changes in the values and signs of Jpp with changes in 

the nature of the groups attached to phosphorus as well as 

changes in the stereochemistry of the complexes. The complexes 

studied include complexes of group VI carbonyls, iron carbonyl 

and palladium halides of the phosphorus ligands PfNfCHgiglg, 

PCOCH^)^ and PfCHg)^. These results will be discussed in terms 

of the theory of spin-spin coupling developed by Pople and 
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Santry (4) . 

The results of the first systematic study of vicinal 

31 31 
p- p coupling will also be reported. The systems employed 

were the bicyclic di-phosphorus compound PCOCHgi^P and several 

of its derivatives. Changes in ^^P chemical shifts, the magni-

31 31 
tudes and signs of P- P spin-spin coupling constants as well 

2 3 
as Jpjj and values as a function of the groups attached to 

the lone pair electrons on the phosphorus atoms were determined. 

These groups include oxygen, sulfur, CH^^ and transition metal 

carbonyl moieties such as Cr(CO)g. 

Finally, the results of studies on the effects of aromatic 

solvents upon the chemical shifts of protons in bicyclic 

molecules will be discussed. These results are interpreted in 

terms of a collision-complex, solute-solvent interaction model. 

Spin-spin Coupling 

The mechanisms by which isotropic nuclear spin-spin 

coupling is transmitted through the electrons of a molecule 

were first postulated by Ramsey (5). He indicated that there 

were three mechanisms by which coupling information could be 

transmitted. Coupling due to the interactions of the nuclear 

magnetic moment with the magnetic field produced by the orbital 

motion of the electrons induces orbital electronic currents 

which in turn induces non-vanishing magnetic fields at the 

site of the second nucleus. This contribution was termed spin-

orbit coupling. A second interaction was postulated which 
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results from the interaction of the magnetic moment of the 

electron and the magnetic moment of the nucleus which again 

establishes non-vanishing magnetic fields at a second nucleus. 

Thirdly, the interaction between the nuclear magnetic moments 

of the coupling nuclei with electrons which have density at 

the coupled nuclei is felt to dominate the other two. Since 

only s electrons have electron density at the nucleus, this 

coupling is transmitted via electrons in s orbitals and is 

termed the contact interaction. Ramsey showed that each of 

these coupling mechanisms are independent of each other, that 

is, cross terms between the Hamiltonians which express the form 

of each type of coupling vanish. He also developed analytical 

expressions for each of these mechanisms using second-order 

perturbation theory. 

A theorem of second-order perturbation theory (6) states 

that the contribution to the total energy of a system due to 

the presence of a second order perturbation is given by Equa­

tion 1. 

g{2) , _ , IWnl« l l V  

n?!k E e/"' 
IX K 

( 2 )  
where E is the second order energy contribution, the and 

are the eigenfunctions of the unperturbed Hamiltonian, 

is the first order perturbation Hamiltonian and E^^^ and E^^^ 

are the eigenvalues for the unperturbed states and 
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Nuclear spin-spin coupling is strictly a second order phenom­

enon, since the first order perturbation contribution to the 

total energy is zero (3), that is, there is no contribution to 

spin-spin coupling due to the ground state. The second order 

contribution to the energy due to the contact interaction takes 

the form of Equation 1, where k = 0 and the sum is over all 

states but the ground state, that is, over all excited states. 

Moreover, is the energy of the unperturbed excited state. 

The Hamiltonian for the contact interaction is expressed by 

Equation 2, where 

g = eh/4nmc is the Bohr magneton, the spin vector for the 

n^^ electron, I is the nuclear spin vector of the i^^ nucleus 

and Ô(r^^) is the Dirac delta function which picks out only 

electrons (n) at the nucleus (i), i.e., is zero when r . ^ 0. 
ni 

It has been shown (5) that for two nuclei i and i' the energy 

of tiiis interaction is 

E-i. = -2(i^)2viyi, Î ^ 
mpo nn 

since the integration is to be carried out over the electrons, 

and may be removed leaving 

âii. = « 
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and 

mpO n n 

where is a second rank tensor. It can be shown that 

may be replaced by one-third the sum of its diagonal elements 

(3), that is l/3Tr ) , which is scalar. Therefore, 

and 

Jii' = -3E<^) I ? 

(*ml6(rni''Sn'l*o) 

where Tr(J^^,) has been written as the dot product of the two 

vectors involved in its definition and expressed in Hz by 

dividing by h. 

McConnell (7) employed the use of LCAO-MO wave functions 

in the calculations of spin-spin couplings, These 

functions take the form 

"'j = 

where the (j)j are the atomic orbitals of the atoms forming the 

molecule. It is possible to show the proportionality 
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Jii.a-(Silô (ri) |SL) (Sj^. 15 (r^,) js^,) x 

occ unocc 
Z 2 

where represents the valence s atomic orbitals, thus 

(S^1ô(r^)IS^) represents the square of the valence s electron 

density at the nucleus i. McConnell replaced the value of 

(Ej^-E^) by an average excitation energy (^AE) which results in 

the expression of this proportionality by 

Jii.a-(^AE)"'^(S^lô(^^) S^) (S^, 16 lS^,)P?^, 10 

where ,, the bond order, is 

Pii,  - 2 2  -  2 Z 11  

Proportionality 10 does not admit the possibility of negative 

contact interactions, which are indeed found experimentally, 

where as Equation 9 does allow this possibility. Indeed, 

according to the symmetry of the molecular orbitals involved 

in the k->l transitions which have some "s character" (i.e., 

have a value for and C^,g) the signs of the C's will be 

positive or negative, and can give rise to either a positive 

or negative product for the C's. 
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The theory represented by Equation 9 has been applied to 

many systems of coupling nuclei. The refinement of the theory 

(8-15) has been based primarily upon refinements in the molec­

ular orbital treatment which has been used and correspondingly 

better values for the energies of the various transitions 

involved. This theory has been applied especially by Pople and 

coworkers (8, 9) and Cowley and coworkers (10-12) in describing 

a wide variety of couplings between magnetic nuclei, including 

and However, no 

31 31 
quantitative application of this theory to P- P couplings 

over more than one bond has been made. This has been hampered 

somewhat by a lack of experimental results. There have been a 

31 31 
large number of geminal P- P coupling values reported (16) 

wherein the central atom is carbon, nitrogen, oxygen or a 

metal atom, but very few sign determinations have been reported 

for this type of coupling. There are only two values reported 

31 31 
for vicinal P- P coupling. These are for trans (CH20)2 

P(0)CH = CH(0)P(0CH3)2 (^Jpp = 37.2 Hz(17)) and for P(OCH2)3P 

(J = -38.1 Hz(18)) which was determined while this work was in 

progress. The sign of the former coupling was not reported. 

Numerous compounds have been synthesized (16) which give rise 

31 31 
to vicinal P- P coupling, but these values have not been 

reported. 

It can be seen from the brief description which has been 

given of the theory of spin-spin coupling that the determina­

tion of the magnitudes and signs of these parameters offers a 
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potential source of information about chemical bonding. Thus, 

a correct picture of the eigenfunctions and eigenvalues of a 

given molecular system must correctly predict the magnitude 

and signs of the isotropic coupling constants between magnetic 

nuclei therein. Likewise, it should be possible to make a 

statement as to the changes in the bonding of such a collection 

of atoms resulting from changes in the nature of the groups 

which are attached to the coupling atoms or intervening bridging 

atoms. Such trends require knowledge of the trends in coupling 

constants as substitution changes. The determination of the 

signs of these parameters is very important, since a change in 

coupling constants can involve a change in sign. The importance 

of this possibility will be discussed later for cases where 

this occurs in the compounds which were investigated for this 

dissertation. 

The methods by which the relative signs of spin-spin 

coupling constants are obtained from double resonance experi­

ments have been discussed by several authors (19-23). An 

example of the application of secondary weak perturbing radio-

frequency fields (24) to the determinations of the relative 

signs of spin-spin coupling constants in an AMX three spin 

system is described in the results section of this dissertation. 

The application of double resonance experiments employing the 

13 
C satellite resonances in the determination of the relative 

2 signs of the coupling constants, including Jpp in a compound 
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such as cis MoEPfOCHglglgfCO)^ has been discussed by Finer and 

Harris (21), and the results of such experiments on the latter 

compound are discussed in detail in the results section. 

Aromatic Solvent Effects 

It is known that proton chemical shifts are dependent upon 

the solvent used to dissolve the compound under investigation. 

The factors (25) which may influence proton chemical shift are 

(a) the solvent bulk susceptibility, (b) solvent magnetic 

anisotropy (c) Van der Waals interactions and (d) the reaction 

field of the solvent in the case of a polar solute. An 

analysis and discussion of the factors is contained in a recent 

review by Laszlo (26). In order to isolate the effect of one 

of these factors, the changes due to the other three must be 

minimized. In determining the effect of aromatic solvents 

upon chemical shifts, the effects due to bulk susceptibility 

changes can be overcome by the use of an internal reference 

standard, and using as a reference solvent one which has nearly 

the same bulk susceptibility as the aromatic solvent under 

investigation. Van der Waals interactions have a negligible 

contribution to the chemical shift when changing from an inert 

to an aromatic solvent (25). The reaction field of the solvent 

is not as easily ignored for polar solutes. The reaction field 

(27) is a secondary electric field which arises in a polar or 

polarizable solvent under the influence of the permanent dipole 

moment of the solute. The reaction field thus modifies the 
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electronic distribution of the solute molecule. The extent 

of this perturbation depends upon the polarizability of the 

solvent and the dipole moment of the solute. This factor can 

be eliminated by using a reference solvent system which has the 

same polarizability or dielectric constant. 

There are two very similar models which have been proposed 

to explain the shift change for protons in polar molecules 

when the solvent is changed from an inert solvent (e.g., carbon 

tetrachloride or n-hexane) to an aromatic solvent (e.g., 

benzene or toluene). Laszlo terms this effect the aromatic 

solvent induced shift (ASIS). One model involves a dipole-

induced dipole collision complex between the solute and solvent 

that results in a specific orientation of the solvent molecule 

with respect to the dipolar functional group in the solute. 

Because of the anistoropy of the aromatic solvent molecule, 

the protons of the solute will be shielded or deshielded 

depending upon their position with respect to the complexed 

solvent molecule. The other model contains the proposal that 

charge transfer complexes are formed between the solvent and 

solute, thus ordering the solvent about the solute and allowing 

the magnetic anisotropy of the solute to affect proton chemical 

shifts. 

The second model which has been proposed as the origin of 

ASIS involves the possibility of the formation of charge 

transfer complexes. It is similar to the induced-dipole-dipole 

model in that the configuration of the complex will be such 
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that the solute molecule will avoid the nodal plane of the 

aromatic solvent molecules which has no electrons for donation. 

Rather, the aromatic molecule will tend to bind the solute 

along its axis perpendicular to the plane. The resulting over­

lap which occurs between the donor and acceptor molecular 

orbitals concentrates electron density between the aromatic 

solvent molecule and the site of coordination. This process 

reduces the possibility of donation of electrons from the 

opposite face of the aromatic solvent molecule to another 

molecule of solute. Thus a 1:1 solvent:solute complex is 

postulated, and shielding or deshielding of the protons in the 

substrate molecule will occur depending upon their disposition 

with respect to the shielding and deshielding regions of the 

aromatic molecule in the complex. 

The origin of the anisotropy of aromatic molecules has 

been the subject of a recent controversy. The original picture 

proposed by Pauling (28) states that ir electrons of such mole­

cules are free and that under the influence of a magnetic 

field, an interatomic current will be established. This cur­

rent will generate a magnetic field opposed to the applied 

magnetic field at the center of the ring. Lines of magnetic 

flux are then established as shown below. 
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shielding 
region 

deshielding 
region 

Thv field at the edge of the ring is then in the same direction 

as the applied field. Thus, aromatic protons resonate at lower 

fields than protons in saturated hydrocarbons. Protons which 

are above the center of the ring would then be expected to be 

highly shielded, as is observed for £-polymethylene benzenes 

(29). Using this concept, Johnson and Bovey (30) calculated 

values which are expected for the shielding contributions from 

such ring currents as a function of position relative to the 

center of benzene. Musher has challenged the mathematical 

ideas underlying the concept of ring currents (31, 32). His 

challenge rests upon his conclusion that the physical picture 

of the circulation of delocalized electrons giving rise to 

large susceptibilities is invalid since this model is based 
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upon the incorrect non-gauge-invariant Langevin-Pauli formula 

of diamagnetism. Furthermore, he points out errors in mathe­

matical manipulation in the original treatment which if cor­

rected, do not lead to the concept of ring currents. Replace­

ment of the Langevin-Pauli formula with the presently accepted 

Van Vleck formula for diamagnetism is not consistent with the 

ring current theory. Gaidis and West (33) attempted to 

support the concept of ring currents but were rebutted by 

Musher (34). Musher concludes that the anisotropy of aromatics 

results from the sum of the anisotropies of the C-C and CH 

bonds formed in planar arrangement and he is able to correctly 

calculate the anisotropies of numerous aromatics on this basis. 

Whatever the origin of the anisotropy of aromatic molecules, 

this property is undoubtedly responsible for the effects which 

were discussed above. 

There are four characteristics which describe these models. 

First of all, the solvent must interact with the solute in a 

specific geometry as was discussed previously. Secondly, these 

models require the existence of a solute :solvent interaction 

which can be formally described^-as-an effective 1:1 complex. 

The determination of the actual stoichiometry of these complexes 

is difficult to prove. The equilibrium considerations which 

follow are based on an effective 1:1 complex. Thus the 

equilibrium 

A + S ^ AS 12 
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can be expressed as a formation constant 

where (A), (S) and (AS) are the concentrations of the solute, 

solvent and complex, respectively. If the usual assumption is 

made that the observed chemical shift is the weighted average 

of the chemical shifts of the free solute, Ôq, and the pure 

A 
complex, it can be shown (35) that 

" = ^Obs - < = îMK <S - = ITWtk "o " 

where A is the observed shift resulting from the association 

and Aq is the chemical shift of the pure complex. Further, the 

equations 

1  _  1  1 ^ 1  T c  
A KAq (S) AQ 

and 

+ AK = 16 

can be derived. It can be seen from Equation 16 that if the 

1:1 complex exists, a plot of A/(S) versus A should yield a 

straight line of slope -K. Fort (36) has indicated that the 

converse is not necessarily true. 
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Thirdly, the 1:1 solutezsolvent interaction models 

proposed allow the calculation of the entropy and enthalpy of 

formation of the complexes from shift versus temperature data. 

(See the results section.) 

The fourth characteristic of these models involves the 

lifetimes of the complexes. In the liquid phase, the time a 

molecule spends in a given orientation between collisions is 

10 to 10 sec. (26) which represents the minimum duration 

of any complex. However, the nmr time scale is much slower. 

In order to observe resonances due to a free molecule and a 

complexed molecule, the lifetime of the complex must be longer 

than the reciprocal of the frequency difference between the 

resonances. The shifts involved for the ASIS phenomenon are in 

the range 0-60 Hz which fixes the lifetime limit at '\,10 ^ sec. 

In other words, the aromatic solvent molecules are exchanging 

faster than the individual shifts of either the uncomplexed or 

complexed solute molecules can be detected by nmr spectroscopy. 

Thus, an averaged spectrum which is weighted by the population 

of the two individual components is observed. 

It might be mentioned that Kuntz and Johnston (37) have 

proposed a collision complex model in which the reaction field 

effect is not considered in explaining the effect of nonaromatic 

solvents upon the chemical shift of protons in polar molecules. 

They derived equations expressing the expected dependence of 

the chemical shift of solute protons upon concentration of 

active solvent in an inert solvent for 1:1 complexes, as well 
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as complexes with other stoichiometries. These authors point 

out that equilibria involving 1:1 or 1:1 and 1:2 solute : solvent 

complexes are sufficient to empirically describe the observed 

effects. However, they do not consider the mechanism by which 

the solvents studied bring about the observed shifts. 

Numerous studies have been reported concerning the effect 

of aromatic solvents on the chemical shifts of protons in 

molecules containing polar substituants. Proton shifts in 

aromatic solvents have been observed for molecules containing 

carbonyl, nitro, and nitrile substituents (26, 38, 39) and from 

the bulk of the literature on this subject (26) , significant 

proton chemical shift differences in such molecules are 

generally found. Important applications of the ASIS phenomenon 

to configurational and conformational analysis has been made 

(26), particularly in the field of steroid molecules. A broad 

study of this area by Williams and coworkers was recently 

reviewed by Williams (40). These investigators have proposed a 

model in which a 1:1 collision complex is formed between the 

solute and solvent molecules wherein the aromatic solvent is 

oriented in a particular fashion by the polar substituent, as 

shown below 
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The interaction between the ketone and the aromatic solvent is 

believed to be a dipole-induced-dipole interaction. The dipole 

moment of the carbonyl function is parallel to the plane of the 

steroid, and in the complex, the plane of the solute and solvent 

are parallel. Protons which are nearby experience the effect 

of the diamagnetic anisotropy of the benzene ring, and are 

either shielded or deshielded to an extent determined by their 

location with respect to the complexed solvent. 

The system which was studied for this dissertation involves 

polar bicyclooctane type molecules, such as HCCOCHgjgCCHg or 

PtOCHglgCCHg in benzene and toluene. The results of the study 

are interpreted in terms of a collision complex model similar 

to the first of those just described. Temperature studies were 

also carried out to determine the enthalpy and entropy of 

formation of these complexes. Results of studies using the 

aromatic solvent hexafluorobenzene are also included which are 

also explained in terms of a collision complex, but with a 

different geometry than that postulated to occur with the 

hydrocarbon aromatics. 
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EXPERIMENTAL 

Materials 

The transition metal complexes of ligands other than 

PtOCHgigP were a generous gift of Mr. Frederic B. Ogilvie while 

those of PfOCHgigP were generously supplied by Mr. David 

Allison as were SPfOCHgl^Pf the phosphonium salts of this 

ligand and OPfCHgOigCCHg. The compounds PfOCHgigCHg (42), 

HCtOCHglgCCHg (43), OP(OCH2)3PO (44), SP(OCH2)3PO (44) and 

P(CH20)2CCH2 (45) were prepared by methods previously reported 

in the literature. The bicyclic phosphite P(OCH)3(CH2)3 and 

the orthoacetate CHgCfOCHgigCCHg were a gift of Dr. Ross 

Compton. Deuterochloroform was obtained from Columbia Organic 

Chemicals Co., Inc. Deuteroacetonitrile and hexadeuterobenzene 

were obtained from Merk Sharp & Dohme of Canada Limited. 

Hexadeuterodimethylsulfoxide was obtained from Mallinckrodt 

Chemical Works. Trifluoroacetic acid (white label) was 

obtained from Eastman Organic Chemicals, as was the trimethyl 

phosphite (yellow label), triethyl orthoformate (white label) 

and trimethyl orthoacetate (white label). The trimethyl 

phosphite was purified by distillation from sodium whereas the 

white label compounds were used without further purification. 

Non-deuterated nmr solvents were reagent grade. Acetonitrile 

was dried by storing over Linde 3A molecular sieves. Benzene, 

toluene and n-hexane were purified by refluxing over sodium 

with a small quantity of benzophenone. When the solutions 
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became blue because of the formation of the water sensitive 

Na^[(CgHg)2C-O] , distillation was carried out through an 8" 

vigeroux column. Hexafluorobenzene was obtained from Aldrich 

Chemical Co., Inc., and used without further purification. 

Tris-dimethylamino phosphine (white label) was obtained from 

Eastman Organic Chemicals and purified by distillation on a 

platinum spinning band column (55*/10 mm). Hexamethylphos-

phoramide was obtained from Aldrich Chemical Co., Inc., and 

used without further purification. 

Preparations 

2,6,7 trioxa-1,4-diphosphabicyclo[2.2.2.]octane 

This compound was prepared by the method of Coskran and 

Verkade (44) utilizing the modifications developed by Guyer, 

Rathke and Verkade (46). 

1,4-dimethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2]octane 

tetrafluoroborate 

To a suspension of 3.0 g (20 mmoles ) of trimethyloxonium 

tetrafluoroborate (prepared according to the procedure of 

Meerwein (47)) in 10 ml of methylene chloride was added slowly 

3.0 g (20 mmoles ) of P(OCH2)3CCH2 dissolved in 10 ml of 

methylene chloride. The reaction mixture immediately began to 

effervesce, indicating the loss of dimethyl ether. Crystals 

formed upon cooling to -20° which were collected by suction 

filtration and dried in vacuo. The compound was characterized 
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by its proton nmr spectrum in CD^CN which indicated a singlet 

due to the 4-methyl protons at 6 = 1.00 ppm, a doublet due to 

2 
the 1-methyl protons at ô = 2.32 ppm ( Jp^ =19 Hz) and a 

3 
doublet due to the methylene protons 4,87 ppm ( Jp^ = 5 Hz) 

relative to TMS as an internal standard. The yield was ~75%. 

Trimethoxymethylphosphonium tetrafluoroborate 

This compound was prepared as above using trimethyl 

phosphite. The solid was obtained as above in ~50% yield. The 

proton nmr spectrum in CD^CN indicates a doublet due to the 

2 
methyl protons at 6 = 2.14 ppm ( Jp^ = 18 Hz) and a doublet 

3 
due to the methoxy protons, 6 = 4.10 ppm ( Jp^ = 11 Hz) relative 

to TMS as an internal standard. 

Instrumentation 

The solvent-dependent nmr chemical shifts were measured on 

a Varian A-60 nmr spectrometer equipped with a variable temper­

ature probe. Frequency calibration was provided by the use of 

standard sideband techniques (1) employing a Hewlett-Packard 

model 200 CD audio frequency oscillator as well as a Hewlett-

Packard model 521 CR frequency counter. Chemical shifts are 

believed accurate to +.1 Hz. Temperature calibration was 

accomplished by measuring the chemical shift of the hydroxyl 

proton with respect to either the methyl or methylene resonances 

for methanol or ethylene glycol, respectively, at each temper­

ature, and obtaining the value of the temperature from the plot 

of chemical shift versus temperature supplied by Varian in the 
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A-60 operating manual. The temperature stability of this 

system is reported to be +1°• Internal tetramethyl silane 

("'5% V/V) was used as the standard. 

The double resonance experiments necessary for determining 

the relative signs of the spin-spin coupling constants were 

performed on a Varian HR-60 nmr spectrometer operating at 

14,100 gauss modified for field-frequency lock. The instrument 

is provided with a Hewlett-Packard model 5100A frequency 

synthesizer and model 5110A frequency synthesizer driver as 

well as a Hewlett-Packard model 5243L frequency counter. The 

V-4331 probe is double tuned to accept either the 15.09 MHz or 

13 31 
24.29 MHz perturbing frequency for C or P, respectively, 

from the frequency synthesizer simultaneously with the 60.00 MHz 

frequency from the V-4311 radio frequency source. The field-

frequency locking circuits are activated by phase detection 

(in dispersion mode) of a sharp resonance signal of an internal 

standard. The signal detected is the first upper-field 2KHz 

sideband produced by field modulation of the main resonance 

signal. Any drift in the field produces a change from zero of 

the voltage of this signal. This voltage is returned to zero 

by means of the application of a small current to the galvano­

meter of the flux stabilizer in such a way that the field is 

changed in sense opposite to the drift. The lock phase 

detector is tied in with the synthesizer driver< Frequency 

stabilization is provided by tying the 2KHz field modulation 
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oscillator circuits, the V-4311 transmitter circuits, the 

frequency counter clock and the signal phase detector to either 

the frequency synthesizer or the synthesizer driver. The 

spectrometer can be operated in frequency sweep mode by appli­

cation of an additional field modulation frequency. This 

spectrometer is also equipped with a digital/analog sweep 

circuit which allows sweeping one decade of the frequency 

synthesizer, or a Wavetech model 111 voltage controlled oscil­

lator, either of which may be used as the secondary frequency 

source. The time base for the digital/analog sweep circuit is 

derived from the frequency synthesizer. By the application of 

a fixed frequency from a very stable oscillator (Hewlett-

Packard model 4204A), it is possible to set the field modula­

tion to a frequency which corresponds to the maximum amplitude 

of a resonance absorption signal to be investigated. Using the 

digital/analog sweep unit and synthesizer, frequencies corre­

sponding to those necessary for the resonance condition of 

31 13 
other nuclei ( P or C) at ~14,100 gauss can be scanned pro­

ducing INDOR spectra of the other nuclei (48). The stability 
O 

of the spectrometer is on the order of one part in 10 for 

several weeks. A block diagram indicating the configuration of 

the components comprising the spectrometer is shown in Figure 

^King, R. W., Ames, Iowa. Block diagram of modified 
Varian HR-60 N.M.R. spectrometer. Private communication. 1969. 
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Figure 1. A block diagram of the Varian HR-60 nmr spectrometer modified for field-
frequency lock 



www.manaraa.com

TO SUPER 
STABILIZER 

FREQUENCY 
CORRECTION 

SIGNAL 

1 KHz 
SYNCH 

.1 MHz 

MARK 
SIGNAL 

LOCK PHASE 
DETECTOR 

COUNTER 
H-P 5234L 

DIGITAL/ 
ANALOG 
SWEEP 
UNIT 

2 KHz 
OSCILLATOR 
(V-3521) 

FREQUENCY 
SYNTHESIZER 

DRIVER 
H-P 5110A 

FREQUENCY 
SYNTHESIZER 
H-P 5100A 

SIGNAL TO 
RECORDER 

60 MHz 

24.3 OR 
15.1 MHz 

V-4331 
PROBE 

MATCHING 
NETWORK 

ATTENUATOR R.F.POWER 
AMPLIFIER 

HARMONIC 
GENERATOR 

SIGNAL 
PHASE 
DETECTOR 

FIELD 
MODULATION 
AMPLIFIER 

STABLE AUDIO 
OSCILLATOR 
H-P 4204A 

TRANSMITTER 

V-4311 
RECEIVER 

N) 
iP»' 



www.manaraa.com

25 

Calibration of the spectra was performed in the following 

way. The digital/analog sweep unit which drove the frequency 

synthesizer was capable of triggering a marking pen attached 

to the Varian G-10 chart recorder at a fixed time interval that 

could be varied by the operator. The marks made by this pen 

could then be assigned frequencies to +.1 Hz by stopping the 

sweep unit at a point corresponding to the various marks on the 

chart. The radio frequency output of the synthesizer could 

then be read from the frequency counter. Spectra were recorded 

by sweeping in both frequency directions and the centers of the 

various resonance peaks were determined by linear interpolation. 

The results for the two scans were then averaged. A typical 

31 
sweep rate for the P INDOR frequency was 0.15 Hz/sec while it 

13 
was 0.03 Hz/sec for C INDOR spectroscopy. 

The spectra were obtained on saturated solutions of the 

compounds studied in the solvents indicated in the results 

section. The HR-60 probe temperature was determined to be 

27.5°C. 
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RESULTS 

Theoretical Considerations 

There are two general methods which may be employed in 

determining the signs of coupling constants when direct analysis 

of the spectrum does not afford such information. One of these 

is to determine directly the signs of coupling constants by 

methods described by Buckingham (49). The experiment involves 

the determination of the high resolution nmr spectrum of the 

molecule which contains the coupling nuclei under conditions 

such that the molecule is partially oriented with respect to 

the magnetic field. In such a situation the molecules under 

investigation have translational motion but only limited 

rotational freedom. Thus, the anisotropic dipole-dipole 

couplings between magnetic nuclei within the same molecule do 

not average to zero and give rise to large splittings in the 

magnetic resonance spectrum. By analysis of the perturbation 

of the isotropic spin-spin coupling upon this spectrum, the 

signs of the isotropic spin-spin coupling constants as well as 

other molecular parameters are obtained. The orientation which 

is required can be forced by imposing large electric fields on 

the sample containing the polar molecules of interest, or 

obtaining the nmr spectrum in a solvent which is in a nematic 

phase. 

The experiments are difficult to perform, however, and 

the alternate method of obtaining the signs of spin-spin 
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coupling constants employs the double resonance experiment. 

This type of internuclear double resonance (INDOR) experiment 

relates the energy levels involved in the nuclear spin transi­

tions of one nucleus with those of another with which coupling 

occurs. The relationship between the ordering of the transition 

energies of one nucleus with respect to the order of the tran­

sition energies of a second nucleus which is coupled to the 

first nucleus can be determined when both nuclei are coupled 

to a third nucleus. This information yields the relative signs 

of the couplings of the first two nuclei to the third. A proof 

of the relationship by which the relative signs of coupling 

constants can be related from double resonance experiments is 

given by Friedman and Gutowsky (22) and is further discussed by 

Whiffen (23) for the case in which the magnetogyric ratios of 

the coupling nuclei have different signs. The nuclei which 

were studied for this dissertation all have nuclear spin I = i 

and have the same sign for their magnetogyric ratios. Thus the 

determination of the relative signs of coupling constants from 

double resonance experiments is relatively straightforward. 

If one of the coupling constants has a sign which is 

known from other experiments and is known not to change sign 

under differing chemical conditions, and if the other two signs 

can be related to this sign, the absolute signs of the other 

two couplings are determined. For example, the sign of is 

known to be positive (49) in numerous cases. Since the values 

observed for this coupling fall in the range of 110 to 220 Hz 
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(49) with no values close to zero it is postulated that the 

coupling is always positive. Relating the signs of other 

couplings to this positive coupling constant in a given molecule 

then determines the absolute sign of the other coupling con­

stants. 

As an example of how the signs of the couplings in a three 

and four spin system are determined, a description of the 

experiments which were performed on OPfOCHgigPO will be given. 

First, the three spin system consisting of the protons and the 

two phosphorus atoms in molecules of OPfOCHgigPO that contain 

12 
only C atoms will be considered. In order to determine the 

relative signs of the coupling constants, the manner in which 

the various transitions for the coupling nuclei are related 

must be determined, and this can be done by double resonancej 

experiments. This author has employed the internuclear double 

resonance technique (to INDOR) which is now described. 

The procedure for obtaining INDOR spectra and deducing 

the connectedness of the various transitions involves setting 

the spectrometer so as to continuously monitor one of the proton 

resonances. That is, the observing frequency is set to cor­

respond to the maximum amplitude of one of the resonances with­

out perturbing it, i.e., without saturation. The spectrometer 

described in the experimental section only allows this to be 

done with the proton region. Then, radiofrequency power is 

applied to the probe which corresponds in frequency to that 

necessary to cause transitions of the nuclei under investigation. 
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, ̂ 24.29 MHz for or 15.08 MHz for It is possible 

to sweep these radiofrequency regions and by using small ampli­

tudes of such a secondary irradiating frequency, the fre­

quencies which perturb the transition under observation can be 

detected. Only frequencies which correspond to transitions of 

the irradiated nucleus having an energy level in common with 

the resonance under observation will perturb the line under 

observation. 

Transitions of a particular state can be represented by a 

change in the product spin eigenfunction of a particular nucleus 

representing the eigenvalues of the system. For spin-^ nuclei, 

there are two spin states that this nucleus can possess (i..e., 

a and 3) and transitions involving absorption of energy of a 

particular nucleus correspond to an a-»-3 change. A particular 

state of a collection of such nuclei can be represented by a 

product of these functions for each nucleus. 

For the case at hand there are actually six protons and 

two phosphorus atoms, thus, the product function describing any 

single state of the system is composed of eight a*s and/or 6's. 

However, a change of only one of the six protons from a to 3 

will give rise to an absorption in the proton region. Thus for 

any particular combination of the two spin functions of the two 

phosphorus nuclei, a change in spin state for any one of the 

protons gives rise to a transition and so the resonance lines 

observed in the proton spectrum are multiply degenerate. It 
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should be noted that the energy of the transition of any of 

these equivalent protons is the same as for any other, no 

matter what the spin states of the other protons are. Since 

there are four distinct product functions of the two phosphorus 

spins (aa, a3, 3a, 33)/ each of these states gives rise to a 

degenerate transition in the proton spectrum. 

The observed nmr spectrum for the proton region as well as 

the region is represented schematically in Figure 2. The 

actual INDOR spectra that were obtained are reproduced in 

Figure 3. Table 1 gives a representation of the origins and 

and connectednesses of the transitions in terms of the product 

spin functions involved in the various transitions. This 

representation was deduced from the results of the experiments 

indicated by Figure 2 and its essential features depend upon 

the sign relation between the coupling constants. 

As indicated, transitions in the proton spectrum result 

from one of the six protons changing spin, a^3. Instead of 

indicating the possible transitions which are degenerate for 

the protons, the general case is indicated by placing the proton 

31 
spin function in parentheses. Transitions in the P spectrum 

occurs because one of the phosphorus nuclei changes spin. As 

a result of the various product functions possible for the six 

equivalent proton spins, the phosphorus resonances occur as 

septets. Rather than writing out all these combinations of 

spin functions for each phosphorus transition, the composite of 

product functions is indicated by (^H) for each band. 
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Figure 2. A schematic representation of the and spectra of OPCOCH^) 
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Figure 3. The INDOR spectra of OPfol^cHglgPO in dg-DMSO 

The numbers in parentheses represent the modulation frequency used to 
observe a particular proton resonance when the spectrometer was locked on 
benzene at exactly 60.002 MHz. The nine-digit numbers represent the 
frequency of the perturbing radio frequency at the center of each of the 
four septets. The splittings due to and ^Jpp are indicated and 
have average observed values of -8.2, +8.3 and +139.1 Hz, respectively. 
Only the center three numbers of each septet are shown. 
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Table 1. A representation of the origin and connectedness of 

the and nmr lines of OPfOCHgigPO given in 

Figure 2. These results were obtained from INDOR 

experiments on the spectrum 

Line(s) Origin^ Connectedness^ 

1 (a)^aa-»-(B)aa 5,8 

2 (a)3a -»-{3)6a 5,7 

3 (a)a3 +(3)a3 6,8 

4 (a)33 +(3)33 6,7 

5 (^H)^aa^(^H)3a 1,2 

6 (^H)a3 +(^H)33 3,4 

7 (^H)a3 -)-(^H)33 2,4 

8 (^H)aa ->(^H)a3 1,3 

^The spin functions are ordered and ^^PtO)^. 

^The first four sets of numbers in this column represent 
the lines which when irradiated are found to perturb lines 
(1-4) in the spectrum. The remaining sets are found by 
deduction from the connectedness of first four. 

^See text. 

The data represented in Figure 2 were taken by employing 

lines 1 and 4, the highest and lowest frequency lines in the 

proton spectrum. The connectedness of lines 2 and 3 to the 

lines in the ^^P spectrum can be deduced from these experiments 

by considering how the indicated couplings split this portion 

of the spectrum. It can be seen that the difference between 
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line 1 and 2 involves a change in the spin state of the 

phosphine oxide phosphorus, but that line 2 has the same spin 

function as line 1 for the phosphate phosphorus. Therefore, 

since it was shown experimentally that line 1 connects line 5 

in the phosphine oxide region, line 2 must also connect here. 

The difference between band 5 and 6 involves a change in the 

spin state of the phosphate phosphorus. Likewise, the dif­

ference between band 7 and 8 is a change in the spin state of 

the phosphine oxide phosphorus. Hence line 2 must be connected 

to band 7 if line 1 was connected to band 8. By similar argu­

ments, the connectedness of line 3 to band 6 and 8 can be 

deduced. 

It may be inferred from the proof of Freidman and Gutowsky 

that by observing the effect of irradiating the resonances in 

the phosphine oxide region upon the transitions in the proton 

spectrum, that the sign relationships between the coupling of 

the phosphorus nuclei and the coupling between the phosphate 

phosphorus and the protons is determined. This is so because 

as stated earlier the difference between bands 5 and 6 is a 

difference in the spin state of the phosphate phosphorus, and 

by the irradiation of these bands, a determination has been 

made of the relative ordering of the spin functions of the 

phosphate phosphorus as revealed by ^Jpp to the ordering of the 

proton spin functions as revealed by An analogous result 

3 2 
obtains for Jpp and Jp^ from irradiation in the phosphate 



www.manaraa.com

37 

phosphorus region. Since the relative signs of these coupling 

constants determines the ordering of the transitions, a 

determination of the origins of the transitions allows the 

determination of the relative signs of the couplings. 

The lowest frequency line is perturbed by irradiation 

31 of the high-frequency member of the P doublet. This means 

2 3 
that Jpjj is opposite in sign to Jpp* Tickling in the phos-

31 
phine oxide P region reveals that the highest-frequency 

member of the spectrum is perturbed by irradiating the high-

frequency member of the phosphine oxide ^^P doublet. Con-

3 3 
sequently, Jp^ is opposite in sign to Jpp- The values of the 

3 2 
couplings and Jp^ are obtained from the splittings in the 

spectrum as well as from the splittings in the INDOR spectra. 

^Jpp is the spacing between the centers of the two septets of 

31 
the phosphate or phosphine oxide P region. 

13 
The natural abundance of C is 1.1% and so 3.3% of the 

13 13 
molecules of OPfOCHgi^PO will have one C atom. Since C has 

a spin I of 1/2, the observable feature of the proton nmr spec­

trum of these molecules in natural abundance is a pair of sat­

ellite resonances nearly equidistant from the resonances due to 

the molecules not containing atoms. The separation of these 

two satellites from each other is The intensity of each 

satellite resonance is about 0.5% of that due to molecules not 

13 
containing . C. These resonances are difficult to observe 

unless the spectra are obtained on neat liquids or the solubil­

ity in a suitable solvent is at least 25% wt./vol. Also 



www.manaraa.com

38 

present are molecules of OPfOCHglgPO having two atoms. 

Their abundance is so low, however, that they are undetectable 

in natural abundance by single scan nmr spectroscopy. 

By observing the resonances due to those molecules of 

13 
OPfOCHgl^PO that have one C atom, it is possible to relate 

3 12 2 11 
Jpjj to J^jj via Jp^, and to via Jp^ by the same 

sort of experiment described above. Since ^Jpp can be related 

3 2 3 
to both Jpjj and Jp^ by these methods, the sign of Jpp 

relative to these couplings is determined by two apparently 

independent routes. Moreover, since is assumed to be 

positive, the signs of the other couplings can be determined 

absolutely. 

The results obtained for the double resonance experiments 

13 1 
employing the C satellite resonances of the H spectrum of 

OPCOCHglgPO are represented schematically in Figure 4. Asso­

ciated with each resonance is a set of product spin functions 

which is consistent with the observed connectedness. At the 

13 
top of the figure is represented the C proton satellites, 

each of which was composed of three broad lines having width at 

half-height of 6 Hz. This broadness is undoubtedly due to long-

range coupling from protons in the molecule not located on the 

13 13 
C atoms. Molecular models show quite clearly that each C 

13 methylene proton in a molecule containing a C methylene carbon 

is in a planar "W" configuration with a chemically and magnet-

12 
ically different proton on each of the C methylene carbon 
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Figure 4. A schematic representation of the H spectrum of OP(OCH,)-PO containing 
13 

one atom of C per molecule and the results of INDOR experiments in the 
13 31 
C and P region 

The numbers in parentheses represent the modulation frequency used to 
observe a particular proton resonance when the spectrometer was locked on 
the OH resonance of the solvent, trifluoroacetic acid at exactly 60.002 MHz. 
The nine-digit numbers represent the frequencies of the perturbing radio 
frequency at the center of each line shown. Only the last four digits of 
the nine-digit numbers are given for all but one of the lines for any of 
the resonances due to a particular nucleus, since the first five are the 
same. The splittings in the INDOR spectra due to lj_^, 2j and 3j__ are 
indicated. 
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atoms, as shown. This configuration is known to be conducive 

H 

to four-bond couplings and gives rise to a coupling of about 

2 Hz (50). It should also be mentioned that the proton spec-

12 trum due to molecules containing only C was a simple triplet 

in trifluoroacetic acid and not a doublet of doublets as 

observed in dg-DMSO. Some of the poorer resolution then must 

have arisen from the small but detectable solvent dependences 

2 3 
of Jpjj and Jpjj- Because of the apparent slow decomposition 

of OPCOCHglgPO in dg-DMSO, trifluoroacetic acid was used as the 

13 
solvent for the lengthy INDOR work on the C satellites. The 

consequence of the overlap of the central peaks of the doublet 

of doublets will be discussed shortly. 

The INDOR spectrum shown in Figure 4 is the central 

doublet of doublets of the triplet of doublet of doublets 

expected. This spectrum arises as a result of splitting due to 

the coupling by the two directly bound protons = 156.7 Hz) 

1 ^ 2 
and the two unlike phosphorus nuclei ( Jp^ = 68 Hz, Jp^ = 9 Hz). 



www.manaraa.com

42 

The INDOR lines were quite broad, possibly due to coupling 

13 12 
between the C atom and protons on the C methylene carbons. 

31 
The P INDOR spectrum resulting from those molecules that 

13 
have one C is as expected (Figure 4). Each of the different 

phosphorus nuclei are split into a doublet of doublets by spin-

13 
spin coupling with the other phosphorus and coupling to C. 

The spectrum is broadened by unresolved coupling to the protons. 

The analysis of a four spin system has been performed by 

Baker (51) using a complete energy level diagram, but this 

method is arduous. The present author has analyzed this system 

using a subspectral approach. Although the method has not been 

explicitly set out, it is implicit in the work of others (19, 

20, 52). Groups of three nuclei are considered in which one 

member of the group is always the protons. The composite of 

two protons on a single is assumed to behave effectively as 

one spin since they are equivalent. 

Consider the three spin system composed of the protons and 

the two phosphorus nuclei employing the satellites in the 

spectrum. It is observed from irradiation experiments in 

31 
the P region that the higher-frequency transition of the phos-

phine oxide phosphorus for a given spin state of the phosphate 

phosphorus is connected with the highest-frequency resonance of 

13 
one of the C proton satellites and that the opposite is true 

for the connectedness of the phosphate phosphorus transitions. 

2 3 3 
Therefore, the sign of Jp^ is opposite to Jp^ and Jpp» Thus 
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the results presented previously using the resonances resulting 

from molecules not containing are implicit in the results 

employing either of the satellites due to the two spin 

states of this nucleus. 

The three-spin system of the and nuclei and the 

phosphine oxide nucleus is considered next. This can be done 

by considering the results for one of the two spin states of 

the phosphate phosphorus, since either state of this nucleus 

yields the same conclusions. Consider the proton resonances 

due to one or the other of the spin states of the phosphate 

13 
phosphorus in one of the C satellites. It can be seen that 

the higher-frequency absorption of both pairs of resonances due 

to the different spin states of the phosphate phosphorus in the 

spectrum is connected to the lower-frequency member of one 

13 
of the pairs of resonances in the C spectrum due to the two 

spin states of the phosphate phosphorus. The same conclusions 

apply to the other satellite in the proton spectrum. 

Furthermore, the higher-frequency resonance of each of the two 

pairs of resonances phosphine oxide spectrum due to the two 

spin states of the phosphate phosphorus is connected to the 

13 1 
higher-frequency C satellite in the H spectrum. This means 

that and have the same sign which is opposite to that 

2 3 3 
of JpQ. Since Jpp and Jp^ were determined to be opposite in 

2 1 
sign to Jpjjr it follows that they have the same signs as 

1 3 3 1 
Therefore, since is positive, Jpp/ Jpjj and Jp^ are also 

2 positive, where as Jp^ is negative. 
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The same logic may be applied to the three spin system 

consisting of the phosphate phosphorus, the carbon and its 

13 
attached protons. It is seen in Figure 4 that for a given C 

satellite a given pair of resonances due to the same spin state 

of the phosphine oxide phosphorus is connected to one of the 

pairs of absorptions in the spectrum arising from the same 

phosphine oxide spin state. In each case, the lower-frequency 

member of one pair is connected to the higher-frequency member 

13 
of the other. The same results are observed for the other C 

satellite in the spectrum. It was also observed that the 

lower-frequency member of the pair of absorptions arising from 

a given spin state of the phosphine oxide phosphorus in the 

31 13 phosphate P spectrum is connected to the higher-frequency C 

satellite in the spectrum. The same was true of the lower-

31 
frequency absorption in the P spectrum for the other spin 

state of the phosphine oxide phosphorus. Therefore, and 

1 2 
have the same sign which is opposite to Jp^. As before, 

3 3 
since Jpp and Jp^ were determined to be opposite in sign to 

2 3 1 
Jpg, it follows that Jpp has the same sign as and so 

2 11 
Jpg has a sign which is opposite to Since is 

3 3 2 
positive, and Jpp have positive signs, whereas Jp^ and ' 

2 
Jp^ are negative. 

The experimental work was somewhat simplified by the 

13 
observation that the C satellites were actually triplets due 

to overlap of the center two members of the expected doublet of 

doublets. This means that the central band of this triplet 
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stems from two combinations of spin states of each phosphorus 

whereas the outer members arise from only one such combination. 

Hence the centers of the triplets are observed to be perturbed 

when the frequencies corresponding to the energies of the 

transitions connected to both these combinations of phosphorus 

spin states are irradiated as is indicated in Figure 4. 

This completes the analysis of the double resonance results 

for the determination of the relative signs of the six coupling 

constants in this system. The results which have been obtained 

for the determination of the signs and magnitudes of the 

coupling constants and the chemical shifts of the phosphorus 

atoms for the derivatives of P (00112)2? are given in Table 2 and 

Table 3. Table 4 presents the values of the nmr parameters for 

some compounds analogous to those for which data is presented 

in Tables 2 and 3. 

For the parent compound, PfOCKgigP, long range coupling 

13 1 
caused the C proton satellite resonances of the H spectrum 

to appear as a broadened triplet instead of the expected doublet 

of doublets. Because the small POCH coupling was obscured, it 

was not possible to observe proton resonances due to the two 

spin states of the phosphite phosphorus and consequently it was 

2 not possible to determine Jp^. All the other couplings could 

be evaluated and the signs determined by the methods previously 

described. For the other compounds listed, limited quantities 

13 
or limited solubilities prevented the observation of the C 
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Table 2. NMR parameters for PtOCHgigP and its derivatives 

Compound 

PfOCHg)]? 

(OOgMOP (OCHgigP 

(OOgCrP (OCHgigP 

cis- [ (OC) jCr][P (OCHg) 3P] 

(OOgWP (OCHglgP 

eq- (OO^FePfOCHglgP 

ax-(OC)^FeP(OCHg)3P 

[CHgPfOCHgigPlBF^ 

''pp' 631 
P (0)3 

"^31 
^ (0)3 

+ 8.9 +2.5 -37.2 - 89.78 +66.99 

+ 8.8 +5.0 - 4.6 -130.82 +68.60 

m
 

00 +
 +5.3 - 3.0 -154.47 +68.57 

{+) (+) - 2.4 -157.21 +68.52 
(8.4) (5.3) 

+8.5 +5.3 - 0.4 -109.09 +68.75 

CM 00 +
 (+) + 7.6 -159.76 +68.10 

(6.1) 

in 00 +
 +6.1 + 8.6 -157.44 +71.38 

+ 8.5 +6.6 +46.2 - 51.03 +59.80 

Solvent 

(CDgigSO 

CH3CN 

CH3CN 

CH3CN 

'3' 

All these J values in Hz refer to couplings between nuclei in the bicyclic 
system, and are precise to +0.4 Hz. Most of these values were determined from 
splittings in the INDOR spectra. For those cases in which the splitting was not re­
solved in the INDOR spectra, the sign is given in parentheses, and the value as 
determined from the ^H spectrum is given below the sign indication; these latter 
values are from reference 53. 

^These J values are precise to + 0.4 Hz, except where indicated. 

c31 
P chemical shifts in ppm are relative to external 85% HLPO,, and are precise 

to + 0.02 ppm. 
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Table 2 (Continued) 

Compound 
''PH- <^31 

P  ( 0 ) 3  
^31 

P(C)3 
Solvent 

ax-(OC)^FeP(CHgO)3P (+) 
(0.4) 

(+) 
(2.8) 

+47.1 + 2.5 - 87.37 -22.42 CH3CN 

SP (0CH2)3P +7.6 +7.5 + 48.1 - 52.06 +70.89 (003)280 

(OC)5M0P(OCHg)3PM0(CO)5 +2.1 +5.2 + 63.7 -130.97 +18.94 CH3CN 

(OC)gCrP(OCHg)jPCr(CO)^ (+) 
(2.0) 

(+) 
(5.6) 

+66.1 + 0.8 -155.52 - 8.21 CH3CN 

(OC) gWP (OCH2) 3PW(C0) 5 {+) 
(1.5) 

+5.5 + 73.8 -108.37 +36.34 CH3CN 

(OC)^FeP(OCHg)3PFe(CO)^ (+) 
(0.4) 

+6.2 + 95.3 -160.40 -22.06 CH3CN 

[P^OCHgigP-CHglBF^ -5.4 +3.1 +114.6 - 89.58 - 2.56 CH3CN 

0P(0CH2)3P0 + 8.2 8.3 +139.1 + 18.17 - 5.48 (003)380 

from ^^C satellites (-) (+) +144.2 — — — — CF3COOH 

[(OC)gWP(0CH2)3PCH3]BF^ -5.6 +6.1 +143.2 -113.00 - 2.98 (CO3) 2CO 

SP {0CH2)3P0 -9.0 +8.2 +151.3 - 49.20 - 5.50 (003)280 
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Table 3. Miscellaneous nmr parameters for PfOCHp)? and its 
derivatives 

Compound Parameter Value^ 

PtOCHgigP +153.1 + 0.2 

-15 + 1 

- 37.88 + 0.1 

OP (OCH.) 3PO Ij 
' CH 

+156.7 +; 0.2 

+ 67.8 + 0.7 

%c 
- 8.5 + 0.7 

'"c 
- 37.28 + 0.02 

[ (OC) gW (P (OCHg) 3PCH3] BF^ ' JPCH3I 17.5 +0.5 

[PCOCHglgPCHglBFj ( ^PCH3t 17.0 +0.5 

[CH3P(0CH2)3P3BF^ 1 JpCHg1 18.7 +0.2 

^Coupling constants are in Hz. C chemical shifts are 
with respect to the methyl carbon of external glacial acetic 
acid. 
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Table 4. NMR parameters for some compounds analogous to those 
for which nmr data are reported in Table 2 

Compound 'jpH* Solvent 

PfOCHglgCCHgC — — 2 -91.5 CH3CN 

P(CHgO)3CCH3 8.0 - +80.5 

[CH3P(OCHg)3CCH3]BF^ 19.0 + 0.5 5.1 -60.15 CH3CN 

OP(0CH2)3CCH3^ — — 7 + 7.97 (CH3)gSO 

OP(CHgO)3CCH3 7.5 - -16.00 CD3CN 

SP(0CH2)3CCH3^ 6 -57.4 (CH^lgSO 

(OC)gCrP(OCHg)3CC2Hg^ — —  4.3 -162 CDCI3 

(OC)gMOP (OCHg) — —  4.2 -136 CDCI3 

(OC) 5WP (OCHg) —  —  4.4 -114 CDCI3 

^Coupling constants are in Hz. 

P chemical shifts are in ppm relative to external 85% 
HgPOg. Values not referenced to other workers were determined 

by this author using the INDOR technique. 

^Values of the parameters for this compound were taken from 
reference 54. 

Values of the parameters for this compound were taken from 
reference 55. 
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satellites in the region. For these cases, the reasonable 

3 
assumption was made that Jp^ remains positive, no matter what 

the groups attached to phosphorus are and the sign assignments 

were made on this basis. This assumption will be examined 

later. 

31 
The P chemical shifts obtained in this work by the INDOR 

technique were calculated in the following manner. It was 
oi 

observed that the center of the trimethylphosphite P resonance 

occurred at 24,292,490.3 Hz when the field was such that the 

protons in the internal standard benzene resonate at 60,002, 

31 
000.0 Hz. Since the former compound has a P resonance of 

140.0 ppm (assumed 140.00 ppm) (16) downfield from external 85% 

phosphoric acid, the frequency of H^PO^ at this polarizing field 

can be calculated using the usual convention (1), 

° -24,292.490.3 = -140.00 x lO"® 

whence 5^ p^ (CgHg) = 24,289,089.8 Hz. In practice, acetoni-

trile and tetramethyIsilane (TMS) were also employed in some 

cases as locking standards. It was determined that acetonitrile 

and TMS resonate at 330.3 Hz and 436.8 Hz to lower frequency, 

respectively, than benzene at 60,002,000.0 Hz and constant field. 

31 
Therefore the frequency of the P resonance of 85% H^PO^ when 

the spectrometer is locked at 60,002,000.0 Hz on these two com­

pounds is given by 
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= 24,289,089.8 x |§x002^0||4 = 24,289,223.5 Hz 

and 

%PO^<™S) = 24,289,089.8 x = 2^-289,266.6 Hz 

It should be noted that since a higher field was required to 

polarize the protons of these latter two compounds than for 

benzene at the same frequency, the frequency at which 85% 

HgPO^ is expected to resonate is increased by a factor which is 

the fraction that the field was increased in observing the 

protons of CH^CN or TMS at 60,002,000.0 Hz, in accordance with 

the Larmor equation (1). In order to determine an unknown 

chemical shift by the INDOR technique, the difference between 

the =„ for the standard which was used and the 5 determined 

for the compound under investigation is determined, and this 

divided by the =„ of the proton standard used, following 

the usual convention (1). This means that the 5 values for the 

31 
P resonances which are deshielded with respect to 85% phos­

phoric acid at constant field are larger and those that are 

more shielded than 85% phosphoric acid are smaller than =„ . 
"3^" 4 

The chemical shifts reported in Tables 2 and 3 are in ppm. 

Since line positions were determined to at least + 0.4 Hz, 

these chemical shifts are precise to + 0.02 ppm. Most ^^P 

chemical shifts determined by direct observation are reported to 

31 
only +0.1 ppm and so the INDOR method allows P chemical 
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shifts to be determined five times more precisely than by direct 

observation. The other advantage of this method is that, except 

for ^H, perturbations are being observed on the nucleus which 

is most sensitive to the nmr technique. This means an optimum 

signal to noise ratio may be achieved. Indeed, for sparingly 

soluble compounds this is a most convenient method of obtaining 

information about nuclei other than In this regard, it 

might be pointed out that although is 100% abundant in 

phosphorus, it is only about 6% as sensitive to detection by 

13 
nmr spectroscopy. The C isotope is only 1.1% abundant in 

carbon and has a sensitivity only 1.58% that of protons at the 

same field strength (1), hence the actual sensitivity to detec-

13 
tion by direct observation of natural abundance C is about 

13 
one-sixthousandths that of protons. For natural abundance C, 

13 
the sensitivity to observation of the C satellites in the 

proton spectrum is about sixty-three times that for the obser-

13 
vation of the C resonance itself. 

For OPtOCHgigPO, the chemical shift difference in Hz 

between the two phosphorus nuclei is only about 2.5 times the 

coupling between them. This means that only the coupling con­

stant and not the chemical shifts may be determined directly 

from the spectrum. The spectrum was analyzed as an AB sub-

spectrum (2) giving the values for the chemical shifts reported 

in Table 2. The actual chemical shift difference is 527.4 Hz 

compared to the frequency difference between the centers of the 
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two doublets of septets of 545.5 Hz. For the other compounds 

reported, the ratio of ôpp to ^Jpp is greater than 10, and so 

31 
the centers of the doublet of septets for each P resonance 

represents their chemical shifts. 

13 
The C chemical shifts in this dissertation are given with 

respect to the isotope of the methyl group of acetic acid 

as an external standard and were determined in the same manner 

as were the ^^P chemical shifts discussed earlier. Incidental 

to this study, the nmr parameters for the compound 

[CHgPfOCHgigj^BF^ were also determined and these results are 

presented in Table 5. 

Geminal 31p_31p coupling 

The systems for which the values and signs of geminal 

31 31 
p- p couplings were determined were of the type LgMfCO)^ 

where M = Cr, Mo, and W, FetCOl^Lg or LgPdXg where L was the 

ligand PfOCHg)], PfCH^)] or PtNfCHgigjg and X = CI or I. These 

spin systems may be classified as X^AA'X'^ spin systems after 

the nomenclature of Corio (56) , where n is the number of protons 

in the X part of the spectrum (e.g., 9 in P^OCHg)^ or 18 in 

PtNfCHgiglg) and A is phosphorus. For some of these compounds, 

the values and signs of the other parameters which determine 

the appearance of the spectrum were also determined. Incidental 

to this study, the values and signs of the couplings in 

PENfCHglglg and OPfNfCHglglg were also determined for comparison 

with the complexed P[N (0112)2] 3» 
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Table 5. NMR parameters for [CHgPfOCHgjgjBF^ 

Parameter Value^ 

+140.9 +0.1 

+153.0 +0.1 

+132.4 + 0.4 

- 6.8 +0.4 

- 17.8 +0.1 

+ 11.4 

- 53.95 + 0.02 

+ 14.59 + 0.02 

- 48.47 + 0.02 

^Coupling constants are in Hz. chemical shifts are 
relative to external 85% H^PO^. chemical shifts are 

relative to the methyl carbon of external glacial acetic acid. 

^The carbon referred to in this parameter is the phos-
phine carbon. 

^The carbon referred to in this parameter is the methoxy 
carbon. 

Ij c 
CH 

PC 

PC 

PH 

PH 

i 6 
31, 

13, 

13, 
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The parameters which determine the appearance of the X part 

of the X^AA'X'^ spectrum are N = , L = - J^, , 

and • Harris (57) has derived equations which define the 

energies and the relative intensities of the X part of the 

spectrum in terms of these parameters, assuming = 0. The 

general features of the X spectrum which appear in Figure 5 

include a sharp doublet of separation N centered as well as 

2n pairs of lines symmetrically placed about The intensity 

of this portion of the spectrum is evenly divided between the 

N doublet and the 2n pairs of lines. These 2n pairs of lines 

may be divided into two sets, the so-called "inner" lines and 

the "outer" lines. For the typical case in which values of 

L/J^ < 1, these designations refer to the lines which occur 

between and outside the members of the N doublet, respectively. 

Only the first outer line pair is represented in Figure 5. 

Harris also showed that the intensity of the outer lines is 

quite small compared to that of the inner lines. However, in 

the event that the first pair of outer lines in the spectrum 

can be found, it is possible to determine the value of 

2 
( Jpp in our application), since the separation between it and 

the most intense inner line is . 

As the value of increases for a particular value of N 

and L, the frequency distribution of the inner and outer lines 

changes. The separation between the first inner line and the 

first outer line remains , but the intensity of the outer 
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Figure 5. Apparent triplet for the X part of an XgAA'X'g; system arising from over­

lapping of the inner lines when » L 

The intensity of the first outer pair of lines has been exaggerated. 
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line decreases as increases. Hence it becomes experi­

mentally quite difficult to find this line for > 100 Hz at 

realizable concentrations of the compounds studied. The separa­

tions of the inner lines becomes smaller as J , increases. 

For I1 >> L, the spectrum has the appearance of an apparent 

triplet. The distribution of the frequencies and intensities 

of these inner lines determines the band shape of the portion 

of the spectrum between the N doublet. Only in rare cases can 

the fine structure due to the inner lines be resolved, and so 

only the envelope of these resonances is observed. From line 

shape considerations, Ogilvie (58) has been able to calculate 

2 values of ( Jpp) in coordination complexes by fitting 

spectra calculated from the Harris equations to the observed 

band shapes. For the limitations of this method, see his dis­

sertation (58). 

In addition to the determination of from the observa­

tion of the first outer pair of lines or from the band shape 

of the central resonance, J^, as well as L may be determined 

from the separations of the first two inner pairs of lines. 

This calculation is demonstrated for cis-W[P(CH^)n(CO)^/ the 

proton spectrum of which is shown in Figure 6. This is the only 

compound among those studied for which this calculation could 

be performed, since the proton spectra of the other compounds 

did not show the fine structure revealed in the spectrum shown 

in Figure 6. Harris has shown that 
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Figure 6. H' nmr spectrum of the central bands of cis-(OC)^W[P(CHj)^ 

The meanings and values of the splitting parameters indicated is given 
in the text. 
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|J^. I = [3S^(1) + S^(2)][S^(1) - S^(2)/2[3S^(1) - 3^(2)] 17 

= S^(l) . S^(2) • [S^(l) + S^(2) 1/[3S^(1) - S^(2)]. 18 

Since S^(l) = 1.15 Hz and S^(2) = 3.16 Hz, I^Jppl = 22.9 Hz and 

L = 7.35 Hz. N is observed directly from the spectrum to be 

7.09 Hz. The value of Jpp reported is in good agreement with 

that obtained from the separation of the first inner and outer 

lines, where Jpp was observed to be 25.0 Hz. It should be 

pointed out that the calculations of J^, and L using Equa­

tions 17 and 18 are quite subject to errors resulting from 

imprecision in the determination of the line positions. Using 

a value for S^(l) of 1.16 Hz, an increase in this parameter of 

2 
0.01 Hz from that observed gives a Jpp of 20.8 Hz and L = 

7.11 Hz if S^(2) is held at 3.16 Hz. From the definitions of 

2 4 
L and N, the values of Jp^ is -7.22 Hz and Jp^ is + 0.13 Hz. 

2 
This compares with a value of -7.34 + 0.05 Hz for Jp^ and 

4 +0.25 + 0.05 Hz for Jp^ from the curve fitting procedures 

employing a value of 25.0 Hz for ^Jpp (58). 

In addition to the resonance lines already discussed, there 

are four additional satellite lines due to coupling of the 14% 

183 
abundant W isotope (I = 1/2) with the protons. The value of 

^J^ is determined from the splitting to be 1.93 + 0.02 Hz. 

INDOR experiments employing these satellites indicate that ^J^gp 

is 209.8 + 1 Hz, and of the same sign as ^J^. Because it was 
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183 
not possible to irradiate W, it was not possible to relate 

these signs to the sign of N, which is known to be negative. 

2 
The method by which the value and sign of Jpp may be 

determined relative to N in X AA'X' systems involves double 
n n 

13 
resonance experiments while observing the C satellite reso­

nances in the proton spectrum. The experiment necessary for 

these determinations has been described by Finer and Harris (21). 

A schematic representation of the and spectra which 

are expected for molecules of this type is presented in Figure 

13 31 
7. Couplings of the protons to the C and P nuclei have 

been ignored except for 

As an example, consider molecules of trans-(PC)^Mo[P(OCH^)^] 

[ P ( O C H ^ ) 2 ] •  T h e  p r o t o n  s p e c t r u m  o f  t h e  p r o t o n s  a t t a c h e d  

to the consists of two systems of bands separated by 

which are quite similar in shape to the single system of bands 

observed for those molecules not containing atoms. Coupling 

between the protons of this molecule not on the ^^C atom and the 

protons on the ^^C atom is apparently too small to result in an 

13 
additional splitting or broadening of the C satellite peaks 

in the compounds studied. 

31 13 
The P resonance for the molecules containing one C 

nucleus appears as two AB patterns because of the two spin 

13 13 
states of C. Because of the presence of the C nucleus in 

one of the phosphorus-containing moieties, the two phosphorus 

nuclei are no longer chemically equivalent. The AB coupling 
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Figure 7. Schematic representation of the ^H, and the 
nmr spectra of a disubstituted complex such as cis-

(OC) 4M0 [P (OCH3) 3] [P (OCH3) 2 (O^^cH^) ] 

1 13 
The H resonance due to those protons not on C 

13 1 
atoms has been eliminated. C- H coupling other 

than has been ignored for the sake of clarity. 

Different scales have been used for the spectra due 
to different nuclei. The band numbers are those 
referred to in the text. The two a b subspectra of 

the ^^P spectrum are drawn separately; for clarity 
dashed lines are used for half of each subspectrum. 
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2 
( Jpp in this case) may be determined from an AB spectrum as 

indicated in Figure 7. Although the intensity of the bands 3, 

6, 7 and 10 is very small, a perturbation of either the a or b 

lines of bands 1 and 2 is observed if sufficient radio frequency 

31 
power is applied at the position of any of the weak P bands. 

13 
If for either of the spin states of C, the higher-frequency 

bands 3 or 7 are shown to be connected to the higher-frequency 

13 2 
lines of the appropriate C satellite, then Jpp has the same 

sign as N, otherwise their signs are opposite. It is theoret-

31 
ically possible to show which AB P spectrum is connected to 

13 
which C proton satellite, and so determine the relative signs 

The spectrum of such a compound as shown in Figure 7 
i 

consists of a 1:3:3:1 quartet of bands. The quartet splitting 

arises because of The origin of the lines comprising 

each of these bands is analogous to the origins of the lines in 

the bands of the spectrum. There is a doublet with splitting 

Nç, and between the doublet lines is a band composed of 2 lines 

arising from transitions of the nucleus between states for 

which there is mixing between the two spin states of the two 

phosphorus nuclei. By determining the relative connectedness 

of the a or b lines of the spectrum with the a and b lines 

13 
in the C spectrum, the relative sign of N to N^, is determined. 

If the highest-frequency line of band 1 or 2 (i.e., la or 2a) 

is connected with the highest-frequency line of bands 11, 12, 



www.manaraa.com

66 

13 and 14, then the signs of N and are the same. If the 

lowest-frequency lines of band 1 or 2 is connected to the 

highest-frequency line of bands 11, 12, 13 and 14, then the 

signs of N and are opposite. 

The double resonance experiments necessary to establish 

the connectedness of the various resonances of the three nuclei 

involved are very similar to those described in detail for 

OPfOCHgjgPO. For the bis-trimethyl phosphite complex of moly­

bdenum under consideration, it was observed that the highest-

frequency line of band 1 (i.e., line la in Figure 7) is con­

nected to the lowest-frequency line of the bands in the 

spectrum (i.e., the b lines). The separation of the a and b 

13 
lines in the C spectrum was determined to be 2.9 Hz. There­

fore, N is opposite in sign to N^, where = 2.9 Hz. It was 

not possible in the case of the trimethyl phosphite complexes 

to resolve the difference in the frequency of the bands in the 

13 
phosphorus spectrum due to the two spin states of C, since 

Nç is very small compared to the width of bands arising 

from the unresolved splitting due to proton coupling. There­

fore, it was not possible to directly relate the sign of N to 

the sign of However, a complete determination of the 

signs and magnitudes of the couplings in the liquid complex 

(OOgMoCPfOCHgXglwas performed, and the sign of ^Jpjj (= 11.6 Hz) 

was determined to be positive. It was expected that the sign 

of N would be positive, since ^Jpjj is positive in the free 
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ligand (+10.0 Hz) (19) and trimethyl phosphate (+10.5 Hz) (19) 

and the observed values are close to the value of 11.6 Hz 

observed for the trimethyl phosphite complexes. Therefore it 

3 
is assumed that the signs of in the bis-trimethyl phos­

phite complex is positive. 

Furthermore, it is expected that the contribution to N of 

the five-bond PH coupling in the bis-trimethy1 phosphite com­

plexes is negligible, since it has been observed that for mixed 

complexes of the type cis and trans- [ (PC) ̂MoP (OCH^) (OCH^) ̂ 

3 5 
CCHg] that no splitting of the main Jp^ doublet due to Jp^j is 

observed (59). 

13 
Figure 8 shows a comparison of a scan of one of the C 

satellite bands of cis-bis-(trimethyl phosphite)molybdenum 

tetracarbonyl under ordinary circumstances with a scan of this 

same band when either band 6 or 7 of Figure 7 is irradiated. 

Irradiating at a frequency of ^40.5 Hz less than the frequency 

of the centers of bands 4, 5, 8 and 9 causes the high frequency 

line to be broadened compared to the low frequency line. The 

low frequency line is also somewhat decreased in intensity, un­

doubtedly due to the fact that the center bands 4 and 5 or 8 

and 9 have some intensity at bands 6 or 10, and high radio 

frequency power is required to cause the observed effect. This 

3 
result indicates that Jpp is of opposite sign to N and hence 

^Jpp is negative. For the complexes of the other ligands that 

1 3 
were studied, it was possible to relate N to and so Jpp 
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Figure 8. Two scans of one of the satellite resonances of cis-(PC)^Mo[P(OCH^)^ 

which demonstrate the determination of the relative signs of N and ^Jpp 

Frequency increases left to right in both scans. The scan on the left was 
obtained while irradiating at a frequency 40 Hz greater than the frequency 

31 
of the center of the central bands of the P ab subspectrum (bands 4 ,  5, 
8 and 9 in Figure 7). Since the lower frequency member of the N doublet 

2 is perturbed, N and Jpp have opposite sign. 
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1 
could be related to In some cases, for a particular 

ligand, the sign of N was assumed not to change from one complex 

to another in order for the determination of the relative sign 

of ^Jpp to N to give the absolute sign of ^Jpp« 

The results of the nmr studies of the disubstituted transi­

tion metal carbonyl complexes in which the sign of ^Jpp were 

determined are given in Table 6. The results of the nmr study 

of the compounds PCNfCHglglg, OPENfCH^ilg and (OC) ̂Mo [P (OCH^) 3] 

are given in Table 7. The and ^^P chemical shifts were 

calculated as previously described. 

Aromatic Solvent Induced Shifts 

It was observed for the bicyclic compounds PtOCHglgCCH^, 

HCfOCHgigCCHg, CHgCfOCHgi^CCHg and HC(OCH)3(CH^)3 that the 

chemical shifts with respect to internal TMS are greatly affected 

in aromatic solvents compared to their values in non-aromatic 

solvents. The results of a study of these effects are presented 

in Table 8. The chemical shift values are those for the indi­

cated protons at solute concentrations for which no change was 

observed in the chemical shift with further dilution. Data are 

also presented for these compounds dissolved in hexafluoro-

benzene. Similar data are presented in Table 9 for P (00113)3 

and HC(0^3)3. 
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Table 6. NMR parameters for disubstituted metal complexes. The spectra were obtained 
in dg-benzene, except where indicated. L = P(OCHg)g, L' = PfNtCHglg]], 

L" = PfCH])] 

Compound N N. CH PP 31, 31, 

cis-(OC)4M0L2 

trans-(OC)^MoLg 

cis-PdLpCl^^ 

+11.64^0.1 

+11.6+0.1^ 

+12.9+0.2' 

•3.1+0.4 +144.9+0.4 

•1.7+0.4 +144.4+0.4 

•3=7+0.2 +148.5+0.2 

-40.5+4.1= -164.77 -31.29 

+162 +5^ -174.2+.1 -31.44 

,e +79.9+0.2 -96.29 -35.05 

^hese values obtained from ^^C INDOR spectra. 

P chemical shifts are in ppm with respect to 85% phosphoric acid and are 
precise to +0.02 ppm except where noted. 

^^^C chemical shifts are in ppm with respect to the methyl group of neat glacial 
acetic acid and are precise to +0.02 ppm. 

The sign of this value assumed the same as in (OC)^MoP(OCH^)^/ since for 

this compound the separation of the resonances due to the 2 spin states of ^^C in the 

^^P INDOR spectrum could not be distinguished. See the text. 

^Determined from the separation of the first outer pair of lines from the first 

inner pair of lines in the spectrum. See the text. 

^Determined from the difference in the frequency of the central band and the 

outer band of the AB spectrum in the ^^P region which was determined by the INDOR 
technique. 

^Determined on a saturated solution in CDClg. 
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Table 6 (Continued) 

Compound N •^CH 

trans-(OC)jCrL'^^i +9.84+0.02 — —  —  —  —  -17+5^ -178.19 

trans-(OC)^MoL'^ +10.2+0.1 +10•6+0•4 +136.1+0. 1 +101+1® -154.39 — — —  

trans-(OC) +10.4+0.1 +81+5^ -134.17 

trans-(OC)^FeL'^ +9 « 6+0.1 +5.6+0.4 +135.5+0. 1 +65+10^ -170.18 — — —  

cis-(OC)^CrL"^^ -6.9+0.1 — — —  +128.7+0. 2 -36+1® -6.34 — — —  

trans-(OC)^CrL" -7.4+0.1 — — —  -28.5+1® -21.00 — — —  

cis-(0C)4MoL"2 -6.3+0.1 +28.5+0.4 +129 +1 -29.7+0.1® +17.75 

C
O

 in in 1 

cis-(OC) -7.09+0.2 — — —  —25.0+0.1 +40.53 —  —  —  

trans-PdL"oIo^ -7.0+0.1 +37.4+0.4 +130.4+0. 1 +572+5^ +27.71 -0.25 

^Determined on a saturated solution in CSg• 

i 2 
The sign of Jpp for this compound was related to N by the double resonance 

techniques described in the text. The sign of N was assumed from the results of the 
experiments on the other distributed complexes of the same ligand. 
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Table 7. NMR parameters for PENfCH^jg]], OPENfCHgig]^ and 

(OOgMoLP (0^3)3] 

Parameter P[N(CH3)2]3 OP[N(CH3)2l3 (OC) ̂Mo[P (OCH3) ] 3 

CH +133.5+.r +136.2+.4 +146.8+1 

+133.6+.4* +146.2+.4 

PC +19.4+.4 + 2.2+ « 4 —2.3+.4 

PH 

I'^chI 

«31° 

+ 8.8+« 1 

4.1+0.5 

-121.85 

+9.30+0.03 

4.1+.4 

-23.01 

+11.6+.2 

-161.22 

13, -26.94 -16.82 -31.24 

^Determined from the spectrum. 

Determined from the C INDOR spectrum. 

^^^P chemical shifts in ppm are relative to 85% phosphoric 
acid and are precise to + 0.02 ppm. 

C chemical shifts in ppm are relative to the methyl 
carbon of glacial acetic acid and are precise to + 0.02 ppm. 
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Table 8. Chemical shifts of the protons of some symmetrical bicyclic molecules in 
various solvents at infinite dilutions. Chemical shifts are in Hz with 
respect to internal TMS. The negative value indicates that the proton is 
more shielded than TMS. 

Solvent P(OCHg)3CCH3 HC(OCHg)gCCH^ HC(OCH)(CHg)3 CH3(OCHg)3CCH3 

6CH_ 6CH0 6H-C 6CH- 6CH, ÔH-C ÔCH ÔCH,-C(0)o 6CHL 6C-CH-—2 —J — —2 — j — —ax —J J —<6 —j 

CC14 2 2 6 . 0  4 3 . 2  3 1 9 . 0  2 2 8 . 0  4 7 . 0  3 2 2 . 0  9 9 . 0  7 7 . 0  211.0 4 6 . 0  

-"^6^14 2 2 7 . 0  3 6 . 8  3 1 8 . 3  2 2 4 . 6  4 5 . 4  3 2 4 . 0  —  —  —  —  

^6^12 2 2 7 . 0  3 6 . 0  3 2 4 . 0  9 5 . 5 *  — — —  —  — — 

2 0 4 . 0  - 1 2 . 0  3 4 3 . 0  2 1 0 . 0  0  3 5 2 . 2  6 0 . 6  9 3 . 0  2 1 2 . 0  6 . 0  

C6H5CH3 — —  3 3 6 . 0  2 0 8 . 0  4 . 0  —  —  —  —  —  —  —  —  

CgFe —  —  —  —  2 8 2 . 0  2 2 6 . 2  5 7 . 0  2 8 8 . 0  111.6 5 2 . 2  2 2 5 . 0  5 5 . 8  

^This value determined in 
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An indication of the manner in which the chemical shift 

changes with the concentration of benzene in an inert solvent is 

given by the plot in Figure 9. Herein are plotted the chemical 

shift of the methyl and methylene protons versus the mole frac­

tion of benzene in carbon tetrachloride where the solute con­

centration was less than 3% weight per unit volume. It can be 

seen that the chemical shifts are a continuous function of mole 

fraction of benzene. 

If it is assumed that the interaction of the aromatic sol­

vent with the solute involves a 1:1 complex, the equilibrium 

constant for the formation of the complex can be measured as a 

function of temperature, giving the thermodynamic entropy (AS) 

and enthalpy (AH) of formation for the complex. Assuming an 

Table 9. Chemical shifts of the protons of trimethyl phosphite 
and trimethyl orthoformate at infinite dilution in 
benzene and carbon tetrachloride 

Solvent P (0^3)3 

ÔCH, 

HC (0^3)3 

ÔH-C ÔCH3 

CCI, 206.4 

200.4 

78.6 

78.6 

190.2 

187.8 
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Figure 9. The chemical shift for the methyl (0) and methy­
lene (A) protons of PfOCHgigCCHg as a function of the 

mole fraction of benzene in carbon tetrachloride 

The left ordinate is that for the chemical shift of 
the methyl protons. The right ordinate is that for 
the chemical shift of the methylene protons. The 
concentration of PfOCHglgCCHg in these solutions was 

less than 3% wt/vol. Chemical shifts are in Hz on 
the 6 scale. 
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equilibrium of the form 

solute + solvent = solute • solvent 19 

_ [solute • solvent] _ f 
^ " [solute] ~ 1-f 

where f is the fraction of solute tied up in the complex. The 

measured chemical shift of the solute protons (6) will be a 

weighted mean of the chemical shift of the unassociated solute 

(5^) and that in the complex that is 

6 = fÔ^ + (1-f) 6^ 21 

therefore, 

6 - 5  
K = ' 22 

c 

Since 

AF°= -RTlnK = AH - TAS, 23 

c 

Therefore 

6 exp (-AK/RT) exp (AS/R) 

" 1 + exp (-AH/RT) exp (AS/R) ~ 1 + exp (-AH/RT) exp (AS/R) 
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In this equation 6 has been expressed as a function of four 

parameters, & , AH, AS and 6 and an independent variable T. 

It is possible to simplify Equation 25 by the following 

considerations. When the temperature is high, kT >> AH and the 

equilibrium will lie to the left. At high temperature the 

solute proton chemical shifts, measured with respect to internal 

standard TMS, will be due only to the different chemical nature 

of the solute compared to the TMS standard and the reaction 

field of the solvent. The aromatic solvent that was used in 

the temperature studies in this dissertation was toluene, since 

it allows the study of these effects over a wider temperature 

range than is possible with benzene. In order to isolate the 

ASIS phenomenon from the reaction field, the use of a non-

complexing solvent with the same polarizability as toluene must 

be used, ignoring the effects of other forces such as Van der 

Waals interactions. 

On lowering the temperature, the random distribution of 

the aromatic solvent molecules breaks down, as one position is 

more favored than the rest. At low temperatures where kT << AH, 

the solute molecules will be completely tied up in the complex. 

The chemical shift of the protons in question will be the shift 

at high temperatures plus that due to the formation of the com­

plex. 

The two solvents n-hexane and toluene have similar polar-

izabilities (25) and hence the effect of the reaction field can 

be eliminated by the use of n-hexane as reference solvent. 
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Thus, the high temperature chemical shift 6^ can be considered 

to be the chemical shift of the protons in question when the 

solvent is n-hexane. If chemical shifts are measured relative 

to 5^ = 0, then 6 = fô^ and Equation 25 becomes 

6^ exp(-AH/RT)exp(AS/R) 

^ ^ 1 + exp(-AH/RT)exp(AS/R) 

which on rearranging takes the form 

1 ̂  1_ e-AS/R + 27 

c 

It is possible to fit the dependent variable 1/6 to the independ­

ent variable T and the parameters AH, AS and 1/6^ by non-linear 

l e a s t  s q u a r e s  c u r v e  f i t t i n g  t e c h n i q u e s  ( 6 0 ) .  F r o m  E q u a t i o n  2 3 ,  

it i's possible to calculate a value for K at any temperature. 

The results of the temperature studies that were carried 

out are presented in Table 10. Plots of temperature versus 

chemical shift for the formyl and the methyl protons of 

HC(OCH2)3CCH2; the methyl and methylene protons of P^OCHgi^CCHg; 

the formyl and the axial protons of HC(OCH)^(CH2)3 are presented 

in Figures 10, 11, 12, 13, 14, and 15, respectively. As can be 

seen from the data, the chemical shifts of the quatorial and 

methine protons of HC(OCH)^(CH2)^ are little affected by tem­

perature changes. The results of the fit using the iterative 

non-linear least squares program of Moore and Zeigler (60) is 
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Table 10. Data for the chemical shifts in Hz from internal TMS of the protons in 
some bicyclic molecules as a function of temperature in toluene. The 
concentration of solute was in all cases less than 3% wt/V 

Temp.^ PfOCHg) 3CH3 HC (OCHglgCCHg H-CfOCHgigfCHg) 3 
Temp.^ 

CH2 CH3 H-C CH2 CH3 H-C(0)3 CHax ^^eq 

1 o
 

o
 

198.3 -22.2 344.3 206.6 -10.0 356.5 48.5 150.0 

o
 
0
 

in 1 199.2 -18.3 343.0 206.6 -7.1 353.0 53.5 148.8 

0
 

1—i m
 1 -15.2 341.8 207.3 — 4.6 350.6 56.5 150.5 

-17.2 200.8 -13.0 340.1 207.0 -1.6 348.3 59.0 151.0 

m
 

CM +
 202.2 -9.6 338.2 205.3 +1.7 346.3 61.5 151.0 

+14.0 203.1 -7.8 337.5 207.3 +3.2 345.4 62.5 150.5 

+27.5 203.9 -5.8 336.4 210.1 +5.0 343.9 64.0 150.5 

+ 37.0 204.6 -4.6 208.2 +6.4 343.4 66.0 152.0 

+48.0 205.2 -3.1 334.6 210.6 +7.8 342.1 67.0 152.5 

+61.0 206.0 -1.3 333.6 211.2 +9.1 341.2 68.0 153.0 

+75.0 206.4 ~0.9 332.5 211.8 +11.1 340.5 69.0 152.5 

+89.0 206.2 +2.6 331.7 211.4 +12.4 339.0 70.5 152.5 

+103.0 207.7 +4.0 330.6 211.5 +13.5 338.6 72.0 153.0 

^Temperatures are in ®C and are accurate + 1®. 
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Figure 10. Plot of temperature versus chemical shift for the 
formyl proton of HC(OCHg)gCCH^ in toluene 

The chemical shift is in Hz from internal TMS on 
the 6 scale and the concentration of the solute was 
less than 3% wt/v 
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Figure 11. Plot of temperature versus chemical shift for the 
methyl protons of HC(OCHg)gCCH^ in toluene 

The chemical shift is in Hz from internal TMS on 
the 6 scale and the concentration of the solute was 
less than 3% wt/v 
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Figure 12. Plot of temperature versus chemical shift for the 
methyl protons of P(OCHg)^CCHg in toluene 

The chemical shift is in Hz from internal TMS on 
the 6 scale and the concentration of the solute was 
less than 3% wt/v 
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Figure 13. Plot of temperature versus chemical shift for the 
methylene protons of pfoCHgigCCHg in toluene 

The chemical shift is in Hz from internal TMS on 
the 6 scale and the concentration of the solute is 
less than 3% wt/v 
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Figure 14. Plot of temperature versus chemical shift for the 
formyl proton of HC(OCH)^(CHg)3 in toluene 

The chemical shift is in Hz from internal TMS on 
the 6 scale and the concentration of the solute is 
less than 3% wt/v 
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Figure 15. Plot of temperature versus chemical shift for the 
axial protons of HC(OCH)^(CHg)^ in toluene 

The chemical shift is in Hz from internal TMS on 
the 6 scale and the concentration of the solute is 
less than 3% wt/v 
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given in Table 11. In all cases, except for the axial proton 

of HC(OCH)2(CH2)2f n-hexane was used as the reference solvent. 

In this latter case, d^g-cyclohexane was used as reference 

solvent since the resonances of n-hexane obscured the resonance 

of the proton in question. 
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Table 11. Calculated parameters for solute«solvent complex in toluene 

PfOCHglCCHg HCfOCHg) 3CCH3 HC(OCH) 3 ( C H 2 ) 3  

CH3 HC CH3 HC(0-)3 CHax 

AH (kcals/mole) -1.76+0.07 -2.44+0.09 —1.7 0+0.0 6 -1.85+0.15 -1.41+0.13 

AS (e.u.) -4.75+0.14 -6.9+0.2 -4.9+0.1 -5.9+0.2 -4.6+0.1 

-66.6+1.4 27.9+0.5 —60.2+0.7 37.8+1.6 -61.1+4.8 

K at 27.5*C 1.78 2.04 1.51 1.14 1.00 

% complex 
formation 65 67 60 53 50 

^6^ is indicated with respect to the value measured in n-hexane, except for CH^^, 

where it is with respect to the value measured in 
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DISCUSSION 

PfOCHgigP and Its Derivatives 

Characterization of compounds 

The symmetries of the metal atoms in the complexes of 

PfOCHglgP determined from the characteristic infrared absorp­

tions in the carbonyl region are reported elsewhere (53). The 

composition and molecular weights for these systems were con­

firmed by observation of the parent ion peaks in their mass 

spectra (61). The characterization of the symmetries of the 

two axial linkage isomers of the iron carbonyl complex and the 

unusual equatorial isomer are discussed by Allison and Verkade 

(61). 

The possibility of linkage isomerism exists in these tran­

sition metal complexes as well as the phosphonium salts of 

P(0CH2)3P since there are two chemically different phosphorus 

coordination sites in this ligand. Furthermore, P(OCH2)3P is 

capable of coordinating to a metal atom on both donor sites as 

well as functioning as a positively charged ligand if one of 

the phosphorus atoms is quaternized. The disposition of 

P^OCHg)^^ as formulated in the compounds listed in Table 2 was 

determined from the nmr spectral parameters of these compounds. 

The mode of attachment of P(OCH2)3P to the metal cannot be 

unambiguously assigned on the basis of the positions of the CO 

bands. This was shown by the observation (53) that the bridged 

group VI carbonyl complexes showed only two unresolvable 
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carbonyl infrared bands when at least four were expected on the 

basis of two different M{CO)g moieties attached to the two dif­

ferent coordination sites of PfOCHgi^P. It is unlikely that 

exchange of metal carbonyl fragments on the ligand sites accounts 

for this result since for example, in a mixture of (OC)gWP(OCHg)3 

PW(CO)g and free ligand, the spectrum showed the resonance 

of both species and those for the ligand occur at the normal 

chemical shift observed in the absence of the complex. The 

31 
validity of the assignments of the P chemical shifts (Table 2) 

and hence the structures for the two chemically non-equivalent 

phosphorus nuclei in PfOCHgigP, SPfOCHglgP, and SPfOCHglgPO was 

31 
shown previously from a comparison of the P chemical shifts 

31 
of these compounds with the P chemical shifts of the analogous 

compounds PfOCHglgCCHg, OPfOCHgigCCHg and SPfOCHgigCCHg (Table 

31 
4) (44). The P chemical shift for this latter compound in 

conjunction with that now reported for OPfCHgOl^CCHg (Table 4) 

supports the present assignments made from the INDOR determina-

31 
tion of the P chemical shifts in SP (00112)2^0 which was not 

sufficiently soluble for measurement of its ^^P spectrum di-

31 
rectly. It should also be noted that assignment of the P 

chemical shift values for the "phosphine" (PtOg) phosphorus in 

P^OCHgigP and SP^OCHgjgP and the "phosphine oxide" phosphorus 

in SPfOCHgigPO and OP(OCH2)2PO are now established more firmly 

by comparison of these values with those for P(CHgO)gCCH^ and 

OP(CH2O)^CCHj which are now reported in Table 4. 
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The site of coordination in PfOCHg)^^ for the complexes 

31 
was determined from a comparison of the P chemical shifts of 

the complexes (Table 2) with those values observed in the free 

ligand and the analogous complexes of PfOCHgi^CCHg (Table 4) 

(44). For example, only a small change in ^^P chemical shift 

occurs for the ^^P(C)2 from PfOCHglgP (+66.99 ppm) to (OC)gCr-

P^OCHglgP (+68.57 ppm) while the 65 ppm downfield shift in the 

31 
P(0)2 to -154.47 ppm in the complex is comparable to that 

observed for the shift from (-91.5 ppm) to (OC)g-

CrPOOCHg)] (-162 ppm). 

The linkage isomerism in the two axial [(OC)^Fe]P(OCH2) 

complexes is clearly supported by the ^^P chemical shift data. 

In axial - (OC) ̂FeP (OCH2) 3P the ^^P chemical shift for 

31 
and P(0)2 of +71.38 ppm and -157.44, respectively, are con­

sistent with a coordinated phosphite and an uncoordinated phos-

phine moiety of P^OCHgigP* The reverse situation obtains in 

axial - (OC)4FeP(CH20)^P as the ^^P chemical shift for 

31 
and P(C)2 of -87.37 ppm (uncoordinated phosphite) and -22.42 

ppm (coordinated phosphine) suggest. The best evidence for 

31 
these assignments comes from the values of the P chemical 

shift of ^^P(0)2 (-160.40 ppm) and ^^P(C), (-22.06 ppm) in 

diaxial - (OC)^FeP(OCH2)jPFe(CO)^ in which both phosphorus 

nuclei must be coordinated. The geometrical isomer equatorial -

(OC)^FeP(OCH2)2^ contains P(OCH2)2P coordinated through the 

phosphite end on the basis of the ^^P chemical shifts. In 

addition to the infrared evidence that this compound is isomeric 



www.manaraa.com

92 

31 3 
with the axial structure, the P chemical shifts and Jpp 

values also support this conclusion. Though the values for 

these parameters are similar in the two isomers, they are not 

equal since they are considerably outside experimental error. 

The assignment of the linkage isomerism of PfOCHgigP in 

31 phosphonium salts was made by comparing the P chemical shifts 

for [CH,P(OCH,)oPlBF.(6_t = -51.03 ppm, 6,, = +59.80 J ^ J 4 

ppm), (P(OCH,)-PCH,]BF-(6-, = -89.58 ppm, 6,, = 2.56 
2 J j 4 •^•^P(0)3 •^-^P(C)3 

ppm), P(OCH,)-P(6,, = -89.78 ppm, 6-, +66.99 ppm) 
^ P(0)3 ^^?(C)3 

and [CHgPfOCHgigCCHglBF^tGgi = -60.15 ppm). 

The small effect on the chemical shift of one of the phos­

phorus nuclei caused by quaternizing the other in each case 

seems to indicate that a positive charge at one end of the 

molecule does not significantly affect the electronic properties 

of the phosphorus at the opposite end. This is particularly 

evident in the lack of any significant change in the frequencies 

of the carbonyl modes from (OO^WPCOCHglgP to [ (OC) ̂WP {OCH2) 3-

PCH3]BF^ (61). There also appears to be little effect in the 

chemical shifts of one of the phosphorus nuclei by oxidizing 

the other end or coordinating it to a transition metal moiety. 

31 
This is seen by comparing the appropriate P chemical shifts 

in P (0^2)3? and SP(OCH2)3P; SP(0CH2)3P and SP(OCH2)3PO; 
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PfOCHg)]? and (OO^MPfOCHgigP; (OC) ̂MP (OCH2) 3P and (OC) ̂MP-

(OCHgigPMtCO)^. These results suggest that electronic changes 

due to quaternization are rather localized near the phosphorus 

atom coordinated to the atom or ion. With regard to the posi­

tive ligand case, similar conclusions were drawn by Berglund 

and Meek (62) for several cationic metal complexes of the 
+ 

cationic ligand (CgH^)2?(CH2)2^(CH2)CH2P(CgH^)2 in which the 

donor phosphorus atom is one bond further removed from the 
+ 

quaternized phosphorus than in the P (00112)2^^112 cation. 

A discussion of the trends in the various coupling con­

stants is facilitated by the division of the compounds in 

Table 3 into the three classes shown below wherein the sub­

stituent group on the phosphorus in question can be an electron 

pair, a metal fragment, a methyl carbonium ion or a chalcogen 

atom. For each class. 

Class A YP(0CH2)3P 

Class B P(0CH2)3PY 

Class C YP(0CH2)3PY 

3 3 
plots have been constructed of Jpp versus Jp^ (Figure 16) 

3 3 
and Jpp versus Jp^ (Figure 17) in order to reveal the various 

trends in these couplings which will be discussed in the fol­

lowing paragraphs. It should be noted that for each of the 

class C compounds, Y is the same Lewis acid except for (OC)g-

WP(0CH2)3PCH3+ and SP(OCH2)3PO. 

From Figure 16 it is seen that ^Jpjj increases substantially 

(~5 Hz) in positive magnitude for classes A and C but only 
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Figure 16. Plot of ^Jpp versus for YPfOCHglgPt ) 

PfOCHglgPYf ) and YPfOCHglgPYf ) , 

where the Y groups are those indicated adjacent to 
each point 
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Figure 17. Plot of ^Jpp versus ^Jpg for YPfOCHgigPf ), 

P (OCHg ) 3PY ( ) and YP (OCHg ) 3PY ( ) , 

where the Y groups are those indicated adjacent to 
each point 
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slightly (^^.5 Hz) for class B as the Lewis acidity of the Y 

group increases in the order electron pair < methyl < chalcogen. 

This is not unexpected in view of the increase in s character 

in the internal P-0 bonds of the ligand and the rise in effective 

positive charge on the nuclei of the cage (particularly the co­

ordinated P(0)2 phosphorus) which would accompany an increase 

in Lewis acidity of y- The very much smaller rise in in 

the class B compounds might stem from the fact that the P(C)g 

phosphorus is coordinated to Y and this donor site is more 

remote from the POCH bond system through which ^Jpjj is trans­

mitted. Extension of the argument given for the rise in 

in the class A and C compounds to the very small rise in this 

parameter for the class B compounds must be viewed with some 

caution because of the small range of this parameter in the 

latter compounds ('^O.S Hz) and the error in the measurements 

(0.1-0.2 Hz) . 

2 
Figure 17 reveals that Jp^ becomes negative upon in­

creasing the Lewis acidity of Y over a range of ca. 15 Hz for 

classes B and C whereas a range of less than ca. IHz is noted 

for the compounds in class A. It was recently suggested that 

2 
Jpjj changes sign in a similar series of compounds from P(CH20)3" 

CCHg to (0C)^FeP(CH20)3CCH2 to OP(CH2O)^CCH^, but the absolute 

signs were not reported (45). The present data firmly support 

this postulate. Manatt and coworkers (63) discussed sign data 

obtained on other phosphine derivatives which indicated that as 

the s character in the P-C bonds increases due to increasing 
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2 electronegativity of the Y group on phosphorus Jp^ should 

become less positive or more negative. The data depicted in 

Figure 17 is in good agreement with this postulate. 

2 
Values of Jp^ for all the members of class A fall between 

+7.6 and +8.9 Hz. Albrand and coworkers (64) have found that 

there is a correlation which can be made in a large variety of 

2 
phosphines between Jp^ and the dihedral angle made by a plane 

containing the P, C and H atoms and the plane containing the 

C-P bond and the three-fold axis of the P (C)^ bond system. The 

2 
expected value of Jp^ for class A compounds and PfCHgOjgCCHg 

according to their plot is +5 Hz which is somewhat below the 

+7.6 to +8.9 Hz observed for the former and the +8.0 Hz (45) for 

the latter. The small discrepancy can be explained in terms of 

the results of studies carried out by Pople and Bothner-By (8) 

and Manatt (63). From a molecular orbital treatment of the HCH 

system in hydrocarbon derivatives and a consideration of the 

available nmr data in these systems, Pople and Bothner-By have 

concluded that increasing the electronegativity of a substituent 

on carbon should increase the s character in the H-c bonds and 

2 
thus increase toward more positive values. The same con­

clusion was reached by Manatt and coworkers on carbon PCH 

2 systems from a study of the signs of Jp^ in phosphines. The 

2 apparently anomolous Jp^ values in our system compared with 

those of the phosphines examined by Albrand et al. (which con­

tained only hydrocarbon substituents) could be due to the fact 

that the P (C)^ carbons in our compounds are bound to electro­
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negative oxygen groups such as YPfO)^ in class A, and CH^CCO)^ 

in PfCHgOjgCCHg. Such groups would tend to raise a positive 

above the 5 Hz predicted for say PfCHgCHglgCCHg or 

PfCHgCHgjgP. The former compound is as yet unknown whereas the 

nmr parameters for the latter have not been reported. A second 

2 contributing factor to the somewhat large Jp^ values in the 

compounds under discussion might be the slightly less-than-

normal CPC bond angles (i.e., less s character in the PC links) 

2 
due to constraint. The reason for the small rise in Jpg with 

rising electron withdrawing power of the Y group in the class 

A compounds is not apparent at this time. 

31 31 
The values and signs of the vicinal P- P couplings for 

the 18 compounds reported in Table 3 represent the first sys­

tematic study of this coupling constant. Figure 16 (or 17) 

shows that this coupling constant increases markedly from nega­

tive to positive values as the Lewis acidity of the Y group 

increases in the order electron pair<metal carbonyl fragment< 

methyKchalcogen for each class of compounds. This trend 

2 
parallels those discussed above for the changes in Jpg and 

^JpQ and similar arguments based on effective nuclear charge 

and hybridization changes in the bicyclic portion of these sys­

tems may be applied here. It is interesting that ̂ Jpp is more 

sensitive to coordination of the P(C)g phosphorus than the 

P(0)g phosphorus of P(OCH2)3P. This may arise from the greater 

polarizability of the "phosphine" phosphorus lone pair by the 
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Lewis acid moiety. Polarizing both phosphorus pairs (class C) 

augments the ^Jpp coupling over that in analogous compounds in 

classes A and B as expected. 

The parallel trends among the various coupling constants 

in all three classes of compounds are made more significant by 

the fact that the structural rigidity of the systems discussed 

here eliminates rotational averaging of coupling which could 

vary among the compounds studied and so these effects need not 

be considered in the coupling mechanism. It remains, however, 

31 31 
to consider the possibility of a "through space" P- P spin-

spin coupling involving the phosphorus non-bonding orbital lobes 

which lie inside the bicyclic structure along the three-fold 

axis of the molecule. The distance between the phosphorus atoms 
o 

is probably at least 2A which would seem to mitigate against 

such a mechanism. Moreover it would be difficult to see how 

this coupling could rise positively with the increasing Lewis 

acidity of Y as observed, inasmuch as the phosphorus non-bonding 

lobe(s) would be expected to lose s character. It is tenta-

31 31 
tively concluded that a "through-space" for P- P coupling 

need not be invoked presently. 

The signs of the respective couplings of phosphorus to 

in I and its dioxide derivative agree with those reported by 

McFarlane (19) for PfOCHg), OP(0^3)3, P(CH3)3, SP(CH3)3 and 

SeP (0113)3. The ^Jp0 value of -15 + 1 Hz for P (00112)3? is only 

about 1 Hz larger in magnitude than the -13.6 Hz value reported 
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for the same coupling in PfCHg)^. The value of this coupling 

in OPfOCHglgPO is 67.1 + 0.7 Hz which is 11 Hz larger than the 

value of 56.1 Hz reported for SPtCHg)^ and 18.6 Hz larger than 

the value reported for SePfCHglg. The value -8.5 + 0.7 Hz for 

in OPfOCHglgPO is close to the value of -5.8 reported for 

this coupling in OPCOCH^)^* 

13 
McFarlane also reported the chemical shifts of the C 

nuclei in PtOCHg)^ and OPCOCH^)^ (19). He determined that the 

13 
C carbon in PfOCHg)^ is shielded by 6.0 ppm compared to the 

carbon in OPCOCHg)^. This same difference in chemical shift 

was observed between PfCHg)^ and SPCCH^)^ or SePfCHg)^, the 

in the trivalent phosphorus compound being more shielded. The 

13 
C chemical shift of PfOCHglgP (-37.88 +0.1 ppm) was observed 

to be 0.6 ppm to lower field than its dioxide (-37.28 +0.02 

ppm) which contrasts with the results for the aforementioned 

compounds. 

A naive molecular orbital approach was considered in at­

tempting to discuss these results in terms of the Pople-Santry 

theory. By considering the planar PCOP fragment, it can be seen 

that this has symmetry. All a mo*s will be symmetric with 

respect to inversion through the plane of symmetry, hence, it 

is not possible to obtain a positive contribution to the contact 

term. However, it is observed that the entire molecule con­

sidered as a whole is not planar. This should result in mixing 

between the orbitals in the plane of a PCOP fragment and those 
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outside this plane. This mixing could give rise to molecular 

orbitals having some contribution due to the 3s orbital on each 

phosphorus that would give a nagative product for the coeffi­

cients (C) in Equation 9 and hence a positive contact term. 

NMR Studies of Distributed Complexes 

The determination of the magnitudes and signs of the gem-

31 31 
inal P- P spin-spin coupling constants in transition metal 

complexes involving metal-phosphorus bonds is a prerequisite 

for any discussion of the mechanism of this coupling. The 

determination of the signs of such coupling constants is also 

necessary in order to discern trends in these couplings with 

changes in the chemical nature of the ligands. Such results 

would hopefully be interpretable in terms of the nature of the 

metal-phosphorus bond. The requirement that the signs of these 

couplings be determined in addition to their magnitudes arises 

because in numerous cases a given coupling constant involving 

phosphorus is known to change sign, depending on the nature of 

2 the molecule. For instance, Jp^ changes sign from PfOCHg)^ to 

OPfOCHg)^ and changes sign from PfCHg)^ to (19). 

Indeed, by examining the results presented in Table 6, it can 

2 
be seen that Jpp has a different sign depending upon the geom­

etry of the metal .complex for a particular metal and ligand 

(compare cis-(PC)^MoL^ with its trans-analogue) as well as for 

the metal in a given geometry (compare trans-(PC)^MoLwith 

trans-(PC)^CrL'^) . Evidence will be presented which suggests 
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2 
that Jpp changes sign for the trans-Cr complexes as the phos­

phorus ligand changes. Before discussing the results of the 

31 31 
study of geminal P- P couplings, the other nmr parameters 

will be examined for each ligand. 

As indicated earlier, the value of N for the trimethyl 

3 
phosphite complexes is expected to be equal to Jpjj- The values 

reported for N and in Tables 6 and 7 for the complexes of 

PfOCHg)^ compare with the value of +10.0 + 0.1 Hz for P (OMe)^ 

and +10.5 + 0.1 Hz reported for OPtOCHg)^ by McFarlane (19) and 

the value of +11.4 Hz now reported for [CH^P (OCH^) Although 

the s character is the PtO)^ bonds might be expected to change 

from PfOMe)] to OP (0^2)3 to [CHP (OCH^) , the observation of 

a nearly constant may indicate that a compensating effect 

3 
operates in the OC or CH bond, thus lowering Jp^ for. OPfOCHg)^ 

to 10.5 Hz. It is very likely that the stereochemistry of the 

POCH bond system plays a major role in the ^Jpjj coupling con­

stant, since in the constrained phosphite molecules discussed 

previously, in PfOCHgigCCH^ and PfOCHgi^P is 1.8 Hz and 

2.5 Hz, respectively, and for OP(OCH2)^CCH^ and OP(OCH2)3PO, 

3 
Jpy is 7 Hz (54) and 8.3 Hz, respectively while in the tran-

3 
sition metal complexes of these ligands, Jp^ possesses inter­

mediate values. The free rotation of the -OCH3 groups in the 

3 open-chain compounds probably allows Jp^ to average to a value 

which is larger than in the analogous bicyclic compounds., 

2 Considering the values and signs of and Jp^ for the 

trimethyl phosphite complexes, it would also appear that there 
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is a negligible contribution to in the disubstituted com­

plexes of this ligand from Thus, for these compounds 

2 
is nearly equal to JpQ* The values of reported in Table 6 

are between the +10.0 +0.2 Hz reported for PfOCHg)^ and -5.8 

+ 0.2 Hz for OPfOCHg)^ (19) which is slightly higher than the 

-6.8 + 0.4 Hz observed for ^Jpjj in [CH^P (OCH^) 3]^ (Table 5). 

It is concluded from this observation that as the electron 

withdrawing power of the group attached to phosphorus is in­

creased, the two bond P-O-C coupling becomes more negative. 

This trend is the same as that observed for the change in the 

two bond P-C-H coupling as more electronegative groups are 

attached to phosphorus. The latter trend was discussed earlier 

for P^OCHglgP and its derivatives. The explanation for the 

former trend is believed by the author to be the same as that 

for the latter trend. 

It is felt that the N values reported for the complexes of 

PfNtCHgiglg are essentially ^Jpjj as was the case for the com­

plexes of P(0CH2)2 since no splitting of the N doublet due to 

^JpH was observed in the ^H spectrum of mixed ligand complexes 

in which PEN^CHglglg was one of the ligands (59). The sign 

determinations for ^Jpjj reported in this dissertation represent 

the first such investigations involving a three-bond coupling 

through a nitrogen bound to phosphorus. The positive signs for 

these three-bond couplings are not unexpected in view of the 

same sign observed for this coupling in phosphites and their 

derivatives. As with the phosphite complexes, the transition 
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metal complexes of PfNtCHglglg have ^Jpjj values slightly larger 

than in the corresponding oxide. McFarlane has determined the 

^JpQ coupling in to be +13.8 + 0.1 Hz (19). The values 

of 10.0 Hz and 8.8 Hz for in PfOCHg)^ and PCNfCHgig]], 

respectively. Indicate that there is little correlation between 

this coupling and the electronegativity of the intervening atom 

attached to phosphorus. 

It cannot be readily said that N^, for the complexes of 

PENfCHgiglg does not contain a significant contribution due to 

4 
Jp^. The two values which are reported for this parameter 

differ by 5 Hz, and no monosubstituted complex of this ligand 

4 
was studied. However, it is felt that is not significant 

since it was found to be negligible for the trimethyl phosphite 

complexes. As in the case of trimethyl phosphite and its 

2 complexes, the values of are intermediate between the Jp^ 

values observed the free ligand (+19.4 Hz) and its oxide (2.2 

Hz). The trend towards less positive or more negative two-bond 

couplings with increasing electron withdrawing power of the 

group attached to phosphorus is again observed. 

It was also found for P [01(0^2)2] g and its oxide that the 

13 
C INDOR spectrum of these compounds for one spin state of 

31 13 
P and C was a quartet. An example of this is shown in 

Figure 18. The extra splitting is interpreted as being due to 

13 
the long-range coupling between the C and the three protons 

attached to the other methyl group on tlie nitrogen atom. The 

value of this coupling is reported in Table 7, but the sign of 
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Figure 18. INDOR spectrum of 0P[N(CHg)2]2 for one spin state of phosphorus 

and one spin state of the protons attached to the nucleus 
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^Jrc was not determined. 

It was shown by Ogilvie (58) from curve fitting techniques 

that N in the group VI complexes of PfCHg)^ reported in Table 6 

has at most a contribution of +0.3 Hz due to The values 

he reported are +0.2 + 0.2 Hz for cis-(PC)^CrL"^^ +0.3 + 0.2 Hz 

for trans-(PC)^CrL"^, +0.3 + 0.2 Hz for cis-(PC)^MoL"^ and 

+0.25 + .05 Hz for cis-(PC)^WL"^. It was reported by Goodfellow 

that is 10.1 Hz and that I^Jp^l is 2.7 Hz (for the 

P^CHg)^ moiety) in trans-Pdl^P(CH^)(C^H^)^ (65). Thus, if 

4 2 
JpH were opposite in sign to Jpgr they would sum to give 7.4 

Hz. The value of -7.0 Hz for N in trans-PdL"^!^ suggests a 

2 4 
Jpjj of ^-10 Hz and Jp^ = '\,+3 Hz. Indeed, using the value for 

2 
Jpp obtained by this author, Pgilvie has found values of -10.0 

+ 0.2 Hz and +3.0 + 0.2 Hz, respectively, for these couplings 

by a band shape analysis. 

It is noted again that by increasing the electron with­

drawing power of the groups attached to phosphorus in the order 

2 metaKchalcogen, the Jp^ coupling constant decreases from +2.7 

Hz in P^CHg)^ (19) to *^-1 Hz in the neutral group VI complexes, 

to 10.0 Hz in the positively charged trans-Pdl^L''^ and finally 

to -13.0 Hz in SP(CHg)g or SeP(CH2)3. In this regard, it should 

be pointed out that when phosphorus is guarternized to (CH^)^?^ 

or (CH3P) 3PCH3"^ the becomes -15.4 Hz (19) and -17.8 Hz, 

respectively. This trend has been discussed previously with 

regard to the derivatives of P(PCH2)3P, and the arguments pre­

sented there are intended to apply here. 
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It is noted that even though the two-bond couplings in 

the neutral trimethyl phosphite derivatives and the trimethyl 

phosphine derivatives change sign whereas this is not the case 

for the PfNfCHglgjg derivatives, the range of values is nearly 

the same in these three cases (15.8 Hz, 15.7 Hz and 17.2 Hz, 

respectively). This is surprising considering the fact that 

13 1 
the magnetogyric ratio of C is about one-fourth that of H, 

and all else being equal, the P-C couplings might have been 

expected to be about one fourth that of the P-H couplings. This 

phenomenon does not seem to be dependent upon the fact that 

carbon intervenes between the proton instead of oxygen or nitro-

2 + 
gen, for it has been reported that Jp^ in (CgH^l^P is -4.3 

2 
compared to the Jp^ value of +14.1 in (19) giving a 

range of 18.4 Hz (which corresponds to the l6.8 Hz difference 

between for P^OCHg) and [CH^P(OCH^)3]^). It is therefore 

2 
expected that Jp^ in OPtCgHg)^ is somewhat higher than -4.3 Hz. 

2 
This unexpected sensitivity of Jp^ to substitution at phos­

phorus requires further study. 

No assessment of the contribution of ^JpQ to can be made 

at this time. However, it is not unreasonable to expect a con­

siderable contribution although the values reported in Table 6 

for Nç, are intermediate between the ^'JpQ of -13.6 Hz for PtCHg)^ 

and the ^JpQ of +56 Hz for (CH^Ï^PS (19). It is noted that the 

value of in P(OCH2CH2)2 is +4.9 compared to +6.8 for 

OP (0^2^3)3. 
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It is interesting that in [CHgPfOCHg)^]* is 132.4 Hz 

compared to ̂ JpQ of +55.5 Hz in PfCHg)^^. It might be argued 

that this is a result of an increase in the s character of the 

P-C link for two reasons. First, the replacement of the three 

methyl groups with three methoxy groups would, according to 

Bent (66), increase the s character in the phosphorus orbital 

involved in bonding to carbon. Bent's rule says that electro­

positive substituents fom bonds having a greater degree of s 

character than electronegative substituents. This represents 

an increase in the C values of Equation 9 for the contribution 

due to a a-*-a* transition, which means an increase in the con­

tribution of a positive term in the contact interaction (8). 

Furthermore, it might be expected that the one phosphine 

carbon and phosphorus in [CH^P(OCH^)3]^ support more positive 

charge than do any one of the methyl groups or the phosphorus 

in [(CHgl^P]*. This would in general lead to a greater value 

for (Sggplar^lSggplfSggcldrQ ISgg^) Equation 9, thus leading 

to an increase in the positive PC coupling in [CHgPtOCHg)^]* 

compared to [ (CH^) ̂P]**". This reasoning is supported by con­

sidering the values of in these compounds which are 142.9 

Hz for the phosphine methyl carbon in [CH^P(OCH^)3]^ and 132.5 

Hz in [(CHgl^P*]. Although it might be argued that this change 

is due to the increased effective electronegativity of the 

phosphorus, it is felt that this change is almost wholly due to 

the increase in the positive charge which the phosphine methyl 

group in [CHgPfOCHg)^]* must support, thus increasing 
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^^2sc'^^ol^2sC^* is found experimentally, for example, that 

increasing the electronegativity of groups attached to the atom 

bound to a methyl carbon has a very much smaller effect on the 

CH coupling constant than is observed here (1) (compare 

for CH3COOH of 130 Hz with CH3CHO of 127 Hz, or, CH3CN of 136 Hz 

with CH3CCI3 of 134 Hz. The changes in the energy levels of the 

0 molecular orbitals which would be brought about by this re­

distribution of positive charge is difficult to assess. It 

might be expected that both the phosphorus 3s and carbon 2s 

orbitals would be lowered in energy as these atoms support more 

positive charge, hence the change in the a->a* excitation energy 

may or may not be changed. 

The values for the various ligands and their complexes 

seem to follow the expected trend. As a result of Bent's rule, 

should increase as the substituent attached to carbon in­

creases its electronegativity in the order P<N<0 since increasing 

the electronegativity of the carbon substituent is expected to 

result in increased s character for the CH bonds. This observa­

tion has a theoretical basis in valence bond theory (67, 68) 

and numerous empirical correlations are in agreement with this 

observation (69-72). The idea that hybridization is solely 

responsible for the observed trends has been criticized, however 

(73). Grant and Litchman (73) have included the effective 

nuclear charge on carbon in considering coupling between directly 

bonded carbon and hydrogen. Since the coupling is proportional 

to the third power of this parameter, small changes in the 



www.manaraa.com

113 

effective nuclear charge will greatly affect Increasing 

the electronegativity of atoms attached to carbon should in­

crease the effective nuclear charge, hence the coupling con­

stant should also increase. In the Pople-Santry molecular 

orbital treatment, increasing the charge on the carbon should 

tend to increase in Furthermore, as the s character in 

the CH bond increases, as reflected by increasing the coeffi­

cients (C) in Equation 9, the positive should become more 

positive. 

31 
The P chemical shifts are as expected. It is observed 

for the transition metal complexes that the phosphorus becomes 

more deshielded upon complexation, and the size of this shift 

for a particular metal is the same as that observed by other 

13 
workers (58, 59). Some of the changes in the C chemical 

shifts are reasonable. For the complexes of PfOCHg)^ (Tables 

6 and 7), a deshielding of 3.61 ppm is observed in going from 

the neutral molybdenum complexes to the dipositive palladium 

13 
complex. The same trend was observed when comparing the C 

chemical shift of P^OCHg)^ with OPfOCH^)^, where the electro­

negative phosphoryl oxygen causes a deshielding of 6.0 ppm in 

the of OPfOCHg)^ (19). An even greater deshielding is 

observed for the methoxy carbon [CH^P(OCH^)This same 

trend is observed in the chemical shift values of the deriva­

tives of PfCHg)^ reported here and elsewhere (19). The fact 

that the in OP [N (0112)2] 3 is more shielded than in 
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PENfCHglglg is out of line with the observations involving the 

former compounds. 

31 31 
The trends in the geminal P- P coupling constants can 

be discussed in terms of three factors: the sterochemistry of 

the metal complexes, the nature of the phosphorus ligand and 

the metal itself. Figures 19 and 20 represent the values of 

2 
Jpp as a function of the metal and ligand for the cis- and 

trans- complexes of the group VI carbonyls respectively. In­

cluded in these figures in addition to the values of the 

couplings reported by this author are the values obtained for 

the complexes of PfOCHglgCR (R = alkyl) and PFj (58). Although 

2 
the signs of Jpp for the PfOCHgl^R (R = n-alkyl) and PF^ com­

plexes have not been determined, it is highly probable that they 

are as indicated. It is believed that the cis-PF^ complexes 

have negative Jpp values since it has been determined by Nixon 

that ^Jpp for cis-(PC)^Mo[PCCl^F^]o is -48.0 + 0.5 Hz.^ The 

2 
positive Jpp in the trans-PF^ complexes is consistent with the 

2 
change in Jpp with the change in electronegativity of the atoms 

2 
bound to phosphorus. The signs of the Jpp values assumed for 

the complexes of PfOCHgl^R are consistent with the fact that for 

complexes of a particular geometry containing one molecule of 

p(OCH2)2CR and one of PtOCHg)^, the magnitude of ^Jpp is between 

that observed for the complexes coordinated to two molecules of 

2 ^Nixon, J. F., Brighton, England. Magnitude and sign of 
Jpp for cis-Mo[(PC)^PCCI^Fq]2» Private communication. 1969. 
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Figure 19. Variation of ^Jpp with the electronegativity of 

substituants on phosphorus for cis- complexes of 
group VI 
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Figure 20. Variation of Jpp with the electronegativity of 

substituants on phosphorus for trans- complexes of 
group VI 
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P(OCH^) 2 PfOCHgigCR (59). Had the sign of ^Jpp for the com­

plexes of PfOCHglgCR been different from that determined for 

the PfOCHg)^ complexes, it is expected that the magnitude of 

2 
Jpp for the mixed ligand complex would have been smaller than 

that observed for the PCOCH^)^ complexes (59). The value of 

2 
Jpp for trans-(PC)^Cr[P(OCH^)^CR]^ is 9 Hz (58) and could be 

either positive or negative in view of the present lack of a 

2 
magnitude of Jpp for the analogous P^OCHg)^ complex. In 

either case, none of the trends to be discussed are affected. 

The value of ^Jpp for cis-(PC)^Mo[P(N(CH^)2^ 3^ 2 12.4 + 

0.2 Hz. Since this complex isomerizes very rapidly to the 

trans-isomer, it was not possible to determine the sign of this 

coupling. Its sign is assumed to be negative, and the point in 

the graph of Figure 19 for this complex is discussed later. 

Consider first the effect of stereochemistry of a partie-

2 ular metal upon Jpp* It has been recognized for some time 

2 
that Jpp is a function of the stereochemistry of the metal and 

it has been proposed that this parameter is a useful tool in 

characterizing transition metal complexes containing two mole­

cules of a phosphorus ligand (74-76). In general it is found 

2 
that for a particular metal and ligand Jpp is larger in magni­

tude in trans- complexes than in cis- complexes. However, in 

the case of the chromium complexes, this is not observed to be 

the case for the ligands considered in Figures 19 and 20. How-

2 
ever, a consideration of the signs of Jpp for the chromium 
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complexes makes this apparent anomaly understandable for it can 

be seen that for any ligand, the values of the cis-complexes 

are indeed algebraically smaller than those for the trans-

complexes. Indeed, all the cis-complexes of the group VI metal 

2 carbonyls for which sign determinations of Jpp were carried 

2 
out have negative Jpp values. It should be noted that cis-Pd 

2 
[PfOCHglglgClg has a positive Jpp» which indicates that not 

2 all cis-complexes should be expected to have a negative Jpp 

value. 

It should also be pointed out that the range of values 

observed for a particular metal is larger for the trans-complexes 

than it is for the cis-complexes for the ligands which have been 

2 
studied. This seems to indicate that Jpp in the trans- com­

plexes is much more sensitive to changes in the nature of the 

2 
phosphorus donor than is Jpp for the cis-complexes. 

2 
The order in Jpp with metal for a particular stereochem­

istry and ligand appears to be somewhat variable. For the 

trans-complexes, it appears that the order is Cr<W<Mo except for 

2 
the PFg complexes of W and Mo wherein the Jpp values are sep­

arated by only 3 Hz. For the cis-complexes. The order appears 

to be Cr<Mo<W. Values for the cis-complexes of PENfCHgiglg for 

chromium and tungsten are not available for comparison with the 

point indicated for cis-(PC)^Mo[P(N(CHg)^)^]n- The same holds 

true for the cis-P(OCHj)^ complexes of chromium and tungsten. 
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A more meaningful trend appears in Jpp as the nature of 

the atoms attached to phosphorus changes. For the cis-complexes 

it appears that the magnitudes of the couplings become larger 

as the atoms bound to phosphorus become more electronegative. 

There is one exception to this, namely the cis-molybdenum com­

plex of PENtCHglg]^. This complex is quite unstable to re­

arrangement to its trans-isomer. This may indicate that the 

two phosphorus ligands in the cis-configuration sterically 

hinder one another. Therefore, the P-Mo-P angle may be somewhat 

larger than that for the PCCH^)^ complexes. Such a distortion 

2 
could account for anomalously high Jpp value. Without excep­

tion, the trans-complexes of a particular metal follow the trend 

of increasing Jpp with increasing electronegativity of the 

atoms attached to phosphorus. 

It should be mentioned that it was observed by Ogilvie, 

et al., (59) and Grim et (77) that for mixed ligand com­

plexes (i.e., disubstituted carbonyl complexes containing two 

different phosphorus ligands) the above trends are generally 

2 
observed. For the trans-complexes, however, the order of Jpp 

for any pair of ligands with group VI metals is Cr<Mo<W. It 

2 
was also observed by Ogilvie et al. (59) that the values of Jpp 

for a mixed ligand complex were intermediate between the values 

observed for the two analogous complexes in which the two 

ligands in question were identical. 

The molecular orbital treatment of Pople and Santry (4) 

2 
represents a basis for discussion of the trends in Jpp-
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However, a complete explanation of the trends which have been 

observed must await a complete molecular orbital treatment of 

these complexes, with a good wave function and energy level 

description. Since the contact term is considered dominant, 

the problem as outlined previously is to determine the relative 

energies of the transitions between the molecular orbitals that 

have some contribution due to the 3s orbital on both phosphorus 

atoms as well as the symmetry of the orbitals involved. Since 

the contribution to the coupling constant of a particular tran­

sition is inversely proportional to its energy, those transi­

tions of lowest energy contribute greatest, if the coefficients 

of the ao's forming the mo's remain constant. 

A possible molecular orbital diagram for the cis and trans 

1 
group VI complexes is shown in Figure 21. 

The vertical arrows indicate transitions between filled 

molecular orbitals that involve overlap between an atomic 

orbital on the metal and orbitals on both phosphorus atoms which 

contain some contribution due to the 3s of each phosphorus. 

This diagram was constructed employing the coordinate systems 

shown below, and is simplified by ignoring configuration inter­

action. Furthermore, only a interactions are shown, as it is 

expected that ir interactions involving d orbitals, on phosphorus 

will provide only a negligible contact interaction. 

^Ogilvie, F. B., Ames, Iowa. Information on molecular 
orbital diagram for cis- and trans-distributed group VI car-
bonyls. Private communication. 1969. 
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Figure 21. Simplified mo diagram for cis- and trans-octahedral complexes showing 
qualitatively the possible"ordering of energy levels 

The z coordinate was taken to be through the four-fold axis in the trans-
case and perpendicular to the two-fold axis in the cis-case. 
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P 

£i£-C2v trans-D^h 

It can be seen that the lowest energy transition for 

symmetry involves a transition from a molecular orbital that is 

antisymmetrical with respect to reflection in its mirror plane 

(A) to another such A orbital. This transition gives rise to a 

negative contribution to the coupling constant. The remaining 
* * 

three transitions shown, A^(l)+A^(3) , A^^ (3)->-A^ (1) and A^(l) + 
* 

%^(1) make a positive, a positive and a negative contribution, 

respectively. However, these transitions are of higher energy 

and apparently cannot outweigh the contribution due to the low­

est energy transition. This postulate agrees well with experi-

2 
ment, since the cis- group VI complexes have negative Jpp 

values. Phosphorus substituent electronegativity influences 

2 
Jpp values in several ways. First, it will tend to increase 

the positive charge on the phosphorus and should increase the 

electron density at the phosphorus nucleus. According to Equa­

tion 9, this should increase the magnitude of the coupling. 
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hence, the negative couplings will become more negative. Sec­

ondly, according to Bent's rules, the increase in electronega­

tivity should tend to increase the contribution of the 3s 

orbital to the hybrid on phosphorus which binds the phosphorus 

to the metal. This should increase the value of the coupling 

constant. The C values in Equation 9 are also expected to be 

affected by the increase in the electronegativity of the phos­

phorus substituents. Since the symmetry of the molecular orbi-

tals determines the sign of the contribution of a particular 

2 
transition to Jpp* this cannot change with increased electro­

negativity. However, the values of these C's will tend to 

weight certain transitions more than others, as does the energy 

term involved. The trends in these two factors with increasing 

electronegativity at phosphorus are difficult to assess at this 

time. The fact is that increasing the electronegativity of the 

phosphorus substituents causes an algebraic decrease in Jpp 

and may indicate that the weighting of the negative contribu­

tions may be increased by either the C values for the atomic 

orbitals comprising the molecular orbitals and/or the energy 

terms. 

The same sort of arguments about the effects of electro-

negativity of the phosphorus substituents upon Jpp for the 

trans-complexes can be made. As indicated, there are apparently 

many more transitions which must be considered. The same 

problem of determining the relative weight of each transition 

2 
and its contribution to the total Jpp is encountered. The 
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arguments with regard to the effect of electronegativity upon 

the s electron density at the phosphorus nucleus presented 

2 
above are relevant. The Jpp values are expected to increase 

with increasing electronegativity of the substituents attached 

to phosphorus. However, there is a sign change for the chro­

mium complexes, which indicates that the relative contributions 

2 
of the various transitions to Jpp must change such that the 

positive contributions increase their importance with increasing 

electronegativity of the phosphorus substituents. Further dis­

cussion of these trends must await the determination of the 

eigenfunctions and eigenvalues for these systems before assign-

2 
ment of the trends in Jpp values to the changes in these terms 

can be made. 

Aromatic Solvent Induced Shifts 

It was not possible to perform dilution experiments such 

as those described in the introduction, since the solubility of 

the compounds studied was not great enough. The following dis­

cussion and conclusions rests on the data presented earlier. 

The model which is proposed to explain the observation of 

the ASIS phenomenon for the bicyclic compounds studied in this 

dissertation is similar to the specific-geometry collision com­

plex model discussed in the introduction. It is noted from the 

results presented in Tables 8 and 9 and Figures 9-15 that pro­

tons residing near the positive end of the molecular dipole are 

shielded by hydrocarbon aromatic solvents and that those protons 
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near the negative end of the molecular dipole are deshielded by 

hydrocarbon aromatic solvents. The methylene protons of 

PfOCHglgCCHg and HCfOCHgigCCHg or the methine and equatorial 

methylene protons of HC(OCH)^(CH2)3 are very much less if at all 

affected by such solvents. These observations lead to the pos­

tulate that the ASIS phenomenon is a result of a complex such 

as that shown below. It is postulated that the solvent pre­

ferentially collides with the positive end of the molecule to 

form an axially symmetric complex as shown. The model indicated 

may also be considered as an effective complex resulting from 

specifically oriented collisions of more than one solvent mole­

cule with the solvent. The complex could result from a dipole 

induced-dipOle interaction between the dipole of the solute and 

the polarizable ir electron system of the solvent. The protons 

at the positive end of the dipole would then be subjected to a 

shielding effect due to the diamagnetic anisotropy of the com-

plexed solvent molecule. In a similar manner, the relatively 

positive periphery of the aromatic solvent molecule is postu­

lated to independently interact with the negative end of the 

dipole as shown above. The protons attached at this end of the 

molecule will then be deshielded by the complexed solvent mole­

cule. 
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The results of the temperature studies are in accord with 

this postulate. It is expected that as the temperature is 

lowered, the formation of the complex will be favored, since 

the random distribution of solvent molecules around the solute 

breaks down. Hence, those protons that are observed to be 

shielded by an aromatic solvent should show a trend towards in­

creased shielding as the temperature is lowered. Likewise, 

those protons that are deshielded by aromatic solvents are ex­

pected to show a trend towards increased deshielding as the i 

temperature is lowered. Indeed, this is what is observed as 

demonstrated by the data in Table 8 and the plots in Figures 10-

15. 

The thermodynamic data presented in Table 11 indicate that 

the AH of formation of the complexes are quite low and negative. 

The negative AH indicates that the formation of the complex is 

favored as the temperature is lowered as is expected. The cal­

culated equilibrium constants at 27.5® indicate that between 50 

and 67% of the solute molecules are specifically complexed to a 

solvent molecule at one of the complexing sites of the molecules 

considered. These parameters are comparable in magnitude and 

sign to those obtained by Abraham (25) for a similar study of 

iodoform and methyl iodide in toluene. He observed AH = 1.6 + 

0.2 kcals/mole and AS = -6.4 + 0.2 e.u. for the iodoform complex 

with toluene and AH = -1.3 +0.5 kcals/mole and AS = -4.9+0.4 

e.u. for the methyl iodide complex with toluene. 

I 
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The opposite effects were observed when hexafluorobenzene 

was used as solvent. That is, those protons that were shielded 

by hydrocarbon aromatic solvents were observed to be deshielded 

by hexafluorobenzene and those protons that were observed to be 

deshielded by hydrocarbon aromatic solvents are shielded by 

hexafluorobenzene. If it is assumed that the fluorocarbon aro­

matic has a diamagnetic anisotropy in the same sense as does 

the hydrocarbon aromatics, then the geometry of the collision 

complex that would explain the observed results is as shown 

below. The positive end of the solute dipole interacts with 

the relatively more negative periphery of the hexafluorobenzene 

molecule, and causes it to solvate specifically as shown. The 

negative end of the dipole interacts preferentially with the 

relatively more positive central region of the ring, causing 

the solvent to orient itself with respect to the solute as shown. 

The origin of the shielding or deshielding effect is again 

assumed to be due to the same sort of diamagnetic anisotropy 

1 
known for hydrocarbon aromatics. However, it was suggested 

that the effect of the electric field of the CF bond might play 

^Musher, J. I. Rehovoth, Israel. Suggestion that the 
electric field effect of the CF bond dipole may be important in 
determining the shielding or deshielding effects observed with 
hexafluorobenzene. Private communication. 1967. 
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an important role in determining the shielding of a proton 

near the fluorine atom. Calculations employing the Buckingham 

equation (27) were carried out. Three geometric cases were 

considered and are represented in Figure 22. 

Buckingham states that the effect of a dipolar electric 

field on the chemical shift of a proton attached to carbon is 

given by Equation 28, where is the component of the electric 

field along the CH 

|Aa| = 2 X 10"^^Ez + lO'lGgZ 28 

bond, and E is the magnitude of the electric field perpendicular 

to the bond. The second term is neglibible and can be ignored. 

The problem involves determining the component of the electric 

field along the CH bond (Ez) due to a point dipole half way 

along the CF bond. The radial component of the dipole electric 

field is given by E^ = 2y cos6/r and the tangential component 

3 
is given by u sin0/r , where 0 is the angle between the point 

dipole and the radius vector from the point dipole to the 

atom (78). If the component of the dipole electric field is in 

the C->-H direction then the nucleus will be deshielded while 

if the component is in the H->-C direction, the proton will be 

shielded. 

The distances employed throughout are considered to be the 

distance of closest approach - the sum of the Van der Waals 

radii for the interacting atoms (79). Bond distances are the 

sums of covalent radii (79). Furthermore, the bond dipole for 
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Figure 22. Three geometries for the interaction of the point 
dipolar electric field of a CF bond with a proton 
attached to carbon 
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the CF bond (2.0 D) is calculated from the dipole moment of 

fluorobenzene (1.6 D) (80) wherein the negative end is assumed 

towards F, and the 0.4 dipole of a CH bond (81) in which the 

negative end is assumed towards H. 

Case A represents a geometry in which the CF bond is co-

linear with the CH bond. Such a situation might obtain for the 

interaction of hexafluorobenzene with one of the methyl protons 

at the positive end of the molecules under consideration. The 

association may be due to either a hydrogen bonding mechanism 

or a dipole-induced dipole interaction. In any event. Eg = 0, 

since sin 180° =0, and Ez = 1.17 x 10^ esu/cm^ = E^. There­

fore, Aa = 0.23 X 10 ^ or 0.23 ppm which is 14 Hz at 60 MHz. 

Since the component of tixe dipolar electric field points towards 

the hydrogen atom, the effect will be to deshield the hydrogen. 

Case B is an attempt to determine the effect of the CF bond 

dipole upon the chemical shift of the protons of a methyl group, 

assuming the CF bond is colinear with the three-fold axis of 

the methyl group. The angles at carbon were assumed tetrahedral. 

It can be shown that Eg makes an angle of only 1®26' with the CH 

bond axis, hence the radial component of the dipolar electric 

field has a negligible component along the CH bond axis and the 

component of Eg along the CH bond axis is essentially Eg. Since 

8 is 160°30', Eg is 1.72 x 10^ esu/cm^ towards carbon. This 

gives a Aa of 0.03 x 10 ^ that is shielding, and represents 1.8 

Hz at 60 MHz. 



www.manaraa.com

135 

Model C represents the case of a proton at the negative 

end of the dipole interacting with the ir cloud of the hexa-

fluorobenzene ring such that the CH bond is perpendicular to 

the plane of the carbon atoms. The half-thickness of the 

electron cloud is taken to be that for benzene which is given 

by Gould (81) to be 1.85 A. 6 is 56° and = 4.45 x 10^ esu/ 

3 4 3 
cm and EQ is 3.31 x 10 esu/cm . Employing angles 8^ and Gg 

which are 34° and 56°, respectively, the component of E^ along 

4 3 
the CH bond is 3.78 x 10 esu/cm and the component of Eg along 

4 3 
the CH bond is 1.85 x 10 esu/cm . These are both towards 

carbon, and sum to give 5.63 x 10^ esu/cm^. This gives a ACT 

of 0.11 X 10 Since there are six such CF bonds symmetrically 

distributed about the CH bond, the contributions of all six 

should add to give the total effect. This would result in a 

shielding of 0.66 ppm which is 39.5 Hz at 60 MHz. 

By performing these calculations employing the bond dipole 

of 0.4 with the negative end at the hydrogen in benzene and a 
O 

proton-proton interaction distance in cases A and C of 2.4 A 

(the sum of the Van der Waals radii), it can be shown that for 

the three cases of Figure 22 the ACT'S are one fifth that stated 

above. This result is a consequence of the geometries employed. 

The sense of these effects is the same as quoted for hexafluoro-

benzene. 

Further light is shed upon the possible mechanism of these 

effects from the results of the shifts of the methyl groups of 



www.manaraa.com

136 

CHgCfOCHgl^CCHg in fluorobenzene and fluorotrichloromethane. 

It was found that fluorobenzene behaves like benzene in that 

the methyl protons at the positive end of the dipole were 

shielded by 22.8 Hz compared to their value in carbon tetra­

chloride and the methyl protons at the negative end were de-

shielded by 17.1 Hz, the same magnitude as observed for the 

shielding by benzene. The shifts of these protons were +0.3 Hz 

for the CHgCtO)^ methyl and -1.7 Hz for the CH^CCC)^ methyl 

protons in CFCl^. These results tend to suggest that apparently 

model A is not important, for even with dipolar monofluoro­

benzene shielding was observed for the methyl protons at the 

positive sites of the solute. Furthermore, the negligible 

effect produced by fluorotrichloromethane tends to indicate 

that the CP bond does not align colinearly with the CH bond. 

Model B then seems reasonable, the origin of the effect being 

largely the diamagnetic anisotropy of the hexafluorobenzene 

rather than the electric field effect. 

The origins of the shielding observed for the protons at 

the negative end of the dipole in hexafluorobenzene is somwhat 

less clear. Model C gives a value for the shielding comparable 

with the observed effect. However, the electric field model of 

Buckingham has been observed to give results inconsistent with 

observation. For instance, Huttemann (82) found that the elec­

tric field of a molecular dipole could not explain the relative 

chemical shifts of the equatorial and axial methylene protons 

in P(OCH)2(CH2)2• In our case, the electric field effect gives 
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a good agreement with experiment if anisotropy effects are 

absent. In the presence of the apparent anisotropy, however, 

the observed shielding effect should be twice that observed. 

The electric field of the CH bond in benzene is apparently 

too small to reasonably account for the observed trends, and 

the magnetic anisotropy of this molecule must be invoked to 

explain the results. 

Incidentally, the model proposed herein differs somewhat 

in concept with those proposed previously (26). The model here­

in presented involves the interaction of the molecular dipole 

with the solvent. The models which have previously been pro­

posed have involved the interaction of the solvent with the 

dipole moment of a specific substituent in the molecule. This 

is particularly significant, for it is observed that the protons 

of the open chain analogues of the caged species studied have 

little or no chemical shift change in going from carbon tetra­

chloride to benzene. This may indicate that the rigid structure 

and the particular geometry of the cage species is important in 

allowing the specific solvation described to take place. 

The postulate that the complex is a result of a dipole 

induced-dipole interaction is supported by the observation that 

the shielding of the methyl protons of the three compounds 

CH^CfOCHgjgCCHg, HCfOCHgigCCHg and PfOCHgigCCHg by benzene in­

creases as their dipole moments increase. The dipole moments 

(83) and values for the analogous methyl groups 
^6 6 4 
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of these compounds are 2.71 D, 3.19 D and 4.13 D and 40.0 Hz, 

47.0 Hz and 55.2 Hz, respectively. 
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SUGGESTIONS FOR FURTHER WORK 

The investigations presented in this dissertation.suggest 

several areas of further research. With regard to the studies 

of PfOCHgïgP and its derivatives, further studies should in­

clude complexes of other Lewis acids, such as the boron Lewis 

acids and cationic transition metals. - Such studies would not 

only extend the ranges of such complexes, but also would help 

elucidate the effect of positive charge on the nmr parameters. 

In order to determine the effects of dihedral angle and free 

rotation upon ^Jpp/ systems such as (RO)2P-O-CH2-P(R)2/ ROP-

(OCHgigPR and their derivatives should be investigated for 

trends in ^Jpp- Indeed, there are numerous other compounds of 

varying structure that have been prepared which should give 

31 31 
rise to P- P coupling over three bonds. Reinvestigation of 

these compounds for this parameter should be done so as to 

accumulate data that might aid in the determination of the mech­

anism of such couplings and in the hope that such data will 

correlate with molecular structure. 

In order to more completely understand the origins in the 

trends in the couplings for PfOCH^igP and its derivatives, a 

complete CNDO calculation should be performed on these systems. 

A computer program is available to do this calculation for the 

derivatives studied, except those involving transition metals.^ 

^Gordon, M. Ames, Iowa. Information on CNDO calculations 
for P(0CH2)3P and its derivatives. Private communication. 1969. 
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For such a calculation to be more than semi-quantitative, 

accurate bond angles and distances are required, which suggests 

that these parameters should be obtained from single crystal 

x-ray diffraction studies. 

Numerous studies are suggested as a result of the nmr 

studies reported on the disubstituted complexes. The postulate 

2 
that the sign of Jpp for the trans- group VI PF^ complexes is 

positive should be verified, if possible, by determining the 

2 
sign of Jpp for a trans-complex of PFgCClg. It is noted that 

the resonance lines in Figure 6 for cis-(PC)^W[P(CH^)^ due to 

the mixing of the aB and 3a spin states of the two phosphorus 

nuclei are broader than those due to the aa or 33 spin state. 

This observation suggests that the mixed spin states of phos­

phorus have a different relaxation time than the aa or 33 spin 

states. The cause of this phenomenon should be investigated, 

not only from the theoretical point of view, but also by 

employing experimental methods, such as variable temperature 

nmr experiments. If the differential relaxation is due to some 

presently unrecognized exchange process, such studies might 

verify this point. 

The fact that for [CH^P(OCH^)3]^ is much larger than 

for leads this author to suggest that an investiga­

tion of this parameter for the "intermediate" compounds 

[(CHglgPtOCHglg]* and [ (CH3) 3P (OCH3) l"*" be done. This would 

reveal whether or not that there is a smooth trend in with 
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the increase in the number of electronegative oxygens attached 

to phosphorus. 

There seems to be a paucity of data involving geminal 

31 31 
p- p coupling through atoms such as oxygen and carbon. It 

would seem reasonable that studies of such couplings might be 

fruitful, since the results would be much more amenable to 

interpretation, as the central atom attached to phosphorus would 

not have d orbitals. Thus full CNDO-SCF and INDO-SCF calcula­

tions could be performed. 

With regard to the observations on the effects of hexa-

fluorobenzene on the chemical shift, it is suggested strongly 

that the diamagnetic anisotropy of this molecule be determined 

so that this factor can be assessed in explaining the observed 

shifts. It might also be appropriate to study the solvent 

effects for solvents of the type where x is increased 

from 1 to 5. At some value of x between 1 and 5 a reversal of 

chemical shift should occur for a particular solute proton. 

Such a study would aid in determining the mechanism by which 

the protons that are shielded by benzene become deshielded by 

hexafluorobenzene and vice versa. 
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